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FINAL REPORT ON THE SPECIAL YEAR IN NUMERICAL ANALYSIS, 1980-81

1. Introduction

Each year the Department of Mathematics at the University of Maryland

has a Special Year in some branch of mathematics. This past year the

topic was Numerical Analysis. The Special Year in 1980-81 was jointly

sponsored by the Air Force Office of Scientific Research and the Mathematics

Department. The main goal of the year was to advance the state of the

art in numerical analysis by bringing together the leading experts in the

field for formal lectures and informal discussions of recent progress,

current problems, and future trends. We placed special emphasis on

numerical solution of partial differential equations, global continuation

methods, numerical methods in statistics, numerical linear algebra, and

numerical problems connected with special functions. The activities in

statistics, numerical linear algebra, and special functions took place

in the Fall Semester and those in the numerical solution of partial dif-

ferential equations took place in the Spring. In the area of global

continuation methods, the activities were spread throughout the year. A

subsection of this report is devoted to each of these major activities.

Through the lectures and the extensive opportunities for informal

discussions, the Special Year provided an excellent opportunity for exchange

of information and ideas between the members of the large and active

numerical analysis group at the University and the visiting mathematicicav,.

1e believe the benefits will be substantial both to the University and "o

the international numerical analysis community.

ApprCv,..plireleas
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2. Activities

a. Numerical Solution of Partial Differential Equations

A wide variety of important problems in science and engineering are

formulated as initial-boundary value problems for partial differential

equations, the numerical solution of which is one of the most important

areas of numerical analysis. In order to survey the central problems and

trends in this area, we invited a total of 30 distinguished visitors to the

campus during the Spring Semester. These 30 visitors represented nearly

all important subfields of the area. The lectures by the visitors were

attended by Maryland students and faculty who are working in the area

or have an interest in it, members of the numerical analysis community

of the Washington area (e.g., from the Naval Surface Weapons Center),

and of course the other visitors in residence at the time. In addition

to the lectures there was ample opportunity for informal discussions.

These discussions were especially fruitful and a number of joint

research projects have grown out of them. Many of the visitors submitted

written versions of their lectures. These range from extended abstracts,

to systematic survey papers, to standard research papers. This collection

of papers has been published as part of the Lecture Note Series of the

Mathematics Department. The activities in this area were loosely divided

between finite element and finite difference methods. The program in

Numerical Solution of Partial Differential Equations was directed by

Professors I. Babuvka, T.-P. Liu, and J. Osborn.

See Attachment A for a list of participants and lectures.
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b. Numerical Methods in Statistics, Numerical Linear Algebra, and

Computation of Special Functions

The fields of statistics, linear algebra, and special functions are

usually regarded as distinct by the mathematical community. In applications,

however, there is considerable overlap: each field leads to numerical

and other problems in at least one of the other two. The increasing speed

and capacity of modern computers is bringing more and more of these problems

into the realm of feasibility.

In order to generate as many contacts as possible between research

workers in the three fields, it was decided to concentrate activities

into a single conference. This was held from October 2 to October 8, 1980

at the Adult Education Center on the College Park campus. The conference

was advertised in the Notices of the American Mathematical Society, SIAM

News, Bulletin of the Institute of Mathematical Statistics, AMSTAT

News, and the Washington Statistical Society. In addition, announcements

of the conference were sent directly by mail to a list of approximately

1650 individuals, including all members of S.I.A.M. resident in North America.

The organizing committee consisted of F. W. J. Olver, G. Stewart and G. Yang.

In all, 132 individuals registered for and attended the conference.

This included 67 from the University of Maryland, 29 from other universities,

18 from government agencies, and 14 from industry. (Four gave no affiliation.)

The attendees from the University of Maryland represented 11 different

departments or programs.

The program consisted of 10 invited 1-hour lectures and 21 30-minute

lectures. Speakers in the second category were selected by the organizing
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committee from extended abstracts submitted in advance. There were also

sessions for 15-minute contributed papers.

See Attachment B for the conference program, abstracts of the 1-hour

invited lectures, abstracts of the 30-minute selected talks, and a list of

registrants.

c. Homotopy Continuation Methods

Homotopy continuation methods are directed towards solving systems

of equations in situations where approximate solutions are not available

and quasi-newton type methods fail. Smooth continuation methods were

emphasized, although simplicial methods were represented by Eaves and

Pcitgen. Keller's and Watson's lectures paid special attention to

applications to physical problems. Harrison and Smale gave lectures

aimed at topics relevant to theorical understanding of families of

periodic orbits (!Hrrison) and the number of steps needed to implement

methods (Smale). Interactions with visitors have led to two papers being

written. The homotopy program was organized by Professor J. A. Yorke.

See Attachment C for a list of participants and lectures.

"-- - *d. ... . . - - 7 
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LIST OF ATTACHMENTS

ATTACHMENT A: List of Participants and Lectures in Numerical PDE Portion
of Special Year;

ATTACHMENT B: Program, Abstracts of the 1-Hour Invited Lectures, Abstracts
of the 30-Minute Selected Talks, and List of Registrants
for the Conference on Applications of Numerical Analvsis
and Special Functions in Statistics

ATTACHMENT C: List of Participants and Lectures in Global Continuation
Methods Portion of Special Year.



ATTACHMENT A: List of Participants and Lectures in Numerical

PDE Portion of Special Year

A
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List of Participants

PROFESSOR GARTH BAKER PROFESSOR MITCHELL LUSKIN
Harvard University Courant Institute

PROFESSOR GARRETT BIRKHOFF PROFESSOR A. MAJADA
Harvard University University of California,

Berkeley
PROFESSOR JAMES BRAMBLE
Cornell University PROFESSOR J. NITSCHE

Inst. Fur Angewandte Math.
PROFESSOR F. BREZZI GERMANY
Universite di Pavia
ITALY PROFESSOR J.T. ODEN

University of Texas,

PROFESSOR P.G. CIARLET Austin
Universite Pierre et Marie

Curie, FRANCE PROFESSOR J. OLIGER
Stanford University

PROFESSOR JIM DOUGLIS, JR.
University of Chicago PROFESSOR A. SCHATZ

Cornell University

PROFESSOR T. 
DUPONT

University of Chicago PROFESSOR RIDGWAY SCOTT
University of Wisconsin

PROFESSOR B. ENQUIST Mathematics Research Center
University of California,

Los Angeles PROFESSOR G. STRANG
Massachusetts Institute

DR. RICHARD EWING of Technology

Mobil Field Research
Laboratory PROFESSOR ROGER TEMAM

Universite de Paris
PROFESSOR R. FALK FRANCE

Rutgers University
PROFESSOR VIDAR THOMEE

PROFESSOR P. GARABEDIAN Chalmers University of
Courant Institute Technology

PROFESSOR J. GLIMM PROFESSOR LARS WAHLBIN
Rockefeller University Cornell University

PROFESSOR AMIRAM HARTEN PROFESSOR W. WENDLAND

Tel-Aviv University Technische Hochschule
ISRAEL Darmstadt, GERMANY

PROFESSOR LING HSAIO PROFESSOR B. WENDROFF

Brown University and Los Alamos Scientific
Academia Sinica, Peking Laboratory
PEOPLES REPUBLIC OF CHINA

PROFESSOR MARY WHEELER
PROFESSOR P. LAX Rice University

Courant Institute
PROFESSOR MILOS ZLAMAL
Technical University
CZECHLOSLOVAKIA

i i l l l il i i i li I L . .. . ... . -- ... . .. .. .. . ,, '... ... . --- . 1. - .
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List of Lectures

DATE SPEAKER TOPIC

Jan 16 V. Thomee Single step methods for linear differential equations
in Banach spaces, PART I

Jan 20 V. Thomee Single step methods for linear differential equations
in Banach spaces, PART II

Jan 20 J. Bramble Remarks on Lagrange multiplier techniques in conjunc-
tion with finite element approximations in various
elliptic problems

Jan 22 G. Birkhoff Adapting Courant-Friedrichs Levy to the 1980's

Jan 27 V. Thomee Single step methods for linear differential equations
in Banach spaces, PART III

Jan 29 R. Scott A comparison of laboratory experiments with a model
equation for water waves

Feb 5 M. Luskin Analysis of a fractional step method for fluid flow
in a pipe

Feb 10 A. Harten On random choice methods for hyperbolic conservation
laws

Feb 10 M. Luskin On a finite element method to solve the critcalitv
eigenvalue problem for the transport equation

Feb 10 P. Lax Convergence almost everywhere of random choice schemes

Feb 12 R. Temam Variational problems in mechanics (plasticity) PART i

Feb 12 P. Ciarlet Questions of existence in non linear elasticity

Feb 17 P. Ciarlet Justification of the von Karman equations

Feb 17 M. Wheeler Mixed methods for miscible displacement problems

Feb 18 R. Temam Variational problems in mechanics (plasticity) PART II

Feb 19 J. Nitsche The method of straightening the free boundary in
moving boundary problems

Feb 24 J. Douglas Numerical simulation of flow in porus media

Feb 24 J. Oden Analysis of some contact problems in nonlinear
elasticity

Feb 26 G. Baker Spectral approximation in Riemannian geometry
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List of Lectures (continued)

DATE SPEAKER TOPIC

Feb 26 R. Ewing Alternating directional multistep procedure for
nonlinear parabolic P.D.E.'s

Feb 27 J. Nitsche A remarkable approximation property of finite ele-
ments and its consequences

Mar 3 B. Enquist Radiation boundary conditions at computational

boundaries

Mar 3 B. Wendroff Defect corrections, multigrids and selected aTpli-
cations, PART I

Mar 5 L. Wahlbin On maximum norm estimates in finite element methods
PART I

Mar 6 W. Wendland Asymptotic convergence of boundary element methods

Mar 10 B. Enquist Flux splittings in compressible flow computations

Mar 10 L. Wahlbin On maximum norm estimates in finite element methods
PART II

Mar 12 B. Wendroff Defect corrections, multigrids and selected appli-
cations, PART II

Mar 12 W. Wendland Integral equation methods for mixed boundary value
problems

Mar 12 L. Wahlbin On maximum norm estimates in finite element methods
PART III

Mar 24 A. Majda Vortex methods in fluid flow

Mar 24 T. Dupont Mesh modification in finite element methods

Mar 26 J. Glimm Hydrodynamics without diffusion: Theory, computation
and application, PART I

Mar 31 A. Schatz Singular functions in the finite element method

Apr 1 A. Majda A theory for Mach Stern formation in reacting shock
fronts

Apr 2 F. Brezzi Finite dimensional approximation of nonlinear nrob-

lems, PART I

Apr 7 A. Schatz Boundedness in L of the Ritz projection

Apr 7 M. Zlamal Galerkin-finite element methas for the solution of

nonlinear evolution equations, PART I

JA
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List of Lectures (continued)

DATE SPEAKER TOPIC

Apr 8 J. Glimm Hydrodynamics without diffusion: Theory, computation

and application, PART II

Apr 9 L. Hsiao Overtaking of shock waves in steady two dimensional
supersonic flows

Apr 9 J. Oliger Adaptive difference methods for time dependent :rob-
lems

Apr 10 J. Glimm Mathematical aspects of quantum field theory

Apr 14 J. Glimm Hydrodynamics without diffusion: Theory, con::utaticn
and application, PART III

Apr 14 M. Zlamal Galerkin-finite element metnods for the solution of
nonlinear evolution equations, PART II

Apr 15 R. Falk A mixed finite element method for the simply sup-
ported plate problem

Apr 16 G. Strang Optimal design

Apr 16 F. Brezzi Finite dimensional approximation of nonlinear prob-

lems, PART II

Arr 21 F. Brezzi Finite dimensional approximation of nonlinear prob-

lems, PART III

Aor 21 P. Garabedian Numerical analysis of equilibria with islands in
magnetohydrodynamics

Apr 23 1. Zlamal Galerkin-finite element methods for the solution of

nonlinear evolution equations, PART III

Apr 24 F. Brezzi Finite dimensional approximation of nonlinear prob-
lems, PART IV

Apr 28 M. Zlamal Galerkin-finite element methods for the solution of

nonlinear evolution equations, PART IV

a*4



ATTACHIENT B: Program, Abstracts of the 1-Hour Invited Lectures.

Abstracts of the 30-Minute Selected Talks, and List

of Registrants for the Conference on Applications of

Numerical Analysis and Special Functions in Statistics
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program for

THE CONFERENCE ON APPLICATIONS OF NUMERICAL

ANALYSIS AND SPECIAL FUNCTIONS IN STATISTICS

held at

Adult Education Center
UNIVERSITY OF MARYLAND
College Park, Maryland

October 2- 8, 1980

sponsored by

U.S. Air Force Office of Scientific Research

Department-of Mathematics, University of Maryland

o rg a n i z in g comm I tt ee

Grace Yang The Mathematical Statistics Program

Frank Olver Institute for Physical Science and Technology

G.W. Stewart Department of Computer Science

~I
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special year in numerical analysis:

This conference is part of a Special Year in Numerical Analysis sponsored
by the U.S. Air Force Office of Scientific Research and the Department of
Mathematics, University of Maryland. Special Year visitors are listed be-
low.

For further information contact Professors: P. Wolfe
Y. Yorke
I. Babuska

SPECIAL YEAR VISITORS:

Fall R. Askey* Spring G. Birkhoff A. Harten G. Strang

W. Cou,* J. Bramble H. Keller R. Temam

J. Dennis* F. Brezzi H.-O. Kreiss V. Thom6e

W. Gautschi* A. Chorin P. Lax W. Wendlund

J. Harrison P. Ciarlet M. Luskin B. Wendroff

S. Karlin* J. Douglas, Jr. A. Majda M. Wheeler

P. Krishnaiah* T. Dupont J. Nitsche M. Zlamal

J. Lyness* B. Enquist J. Oden

C. Paige* R. Ewing J. Oliger

H.O. Peitgen R. Falk A. Schatz

J. Snell* P. Garabedian R. Scott

L. Watson J. Glimm S. Smale

*Conference speakers.

.! '



2

Registration

The registration booth for the Conference is located on the Main Concourse
in the Adult Education Center and will be manned as follows:

Wednesday October I 7:30 - 9:30 P.M.

Thursday October 2 8:30 - 12:00 A.M.

Friday October 3 8:30 - 12:00 A.M.

Saturday October 4 8:30 - 12:00 A.M.

Sunday October 5 7:30 - 9:30 P.M.

Monday October 6 8:30 - 12:00 A.M.

Tuesday October 7 8:30 - 12:00 A.M.

Message Board

There will be a message board located at the Conference Room, #1105, for
your convenience.

Additional Information

The names of the morning and afternoon chairpersons and the names and
titles of the speakers giving contributed papers will be published sep-
arately, since they are not available at the time of this printing.

There will also be available a phamplet containing information on local
transportation and sightseeing, and restaurants.
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Thursday 10-2-80 Rm 1105

9:00 - 9:30 OPENING OF THE CONFERENCE: W.E. KIRWAN

(Chairman, Dept. of Mathematics)

WELCOMING ADDRESS: FRANK J. KERR
(Provost, Division of Mathematical
& Physical Sciences & Engineering)

MORNING SESSION:

9:30 - 10:30 C.C. PAIGE, McGill University, CANADA

"The General Gauss-Markov Model and the Singular Value
Decomposition"

10:30 - 11:00 Coffee

11:00 - 11:30 GEORGE CYBENKO, Tufts University

"The Efficient Solution by Orthogonalization of Linear
Prediction Problems for Stationary Time Series"

11:30 - 12:00 JAMES A. CADZOW, Virginia Polytechnic Inst.

"Autoregressive-Moving Average Spectral Estimation: A
New Effective Modeling Procedure"

AFTERNOON SESSION:

1:30 - 2:30 S. KARLIN, Stanford University

"A Diffusion Stochastic Model of Mathematical Genetics
Involving Airy Functions"

2:30 - 3:00 Coffee

3:00 - 3:30 S.K. KATTI, University of Missouri

Topic: Infinite Divisibility

3:30 - 4:00 K.O. BOWMAN, Union Carbide Corporation

"Models for Approximating the Percentage Points of
Distributions"

4:00 - 4:30 Contributed Papers

A



Friday 10-3-80 RM 1105

MORNING SESSION:

9:00 - 10:00 J.E. DENNIS, Rice University

"Inside Optimization Routines"

10:00 - 10:30 Coffee

10:30 - 11:00 FRANKLIN T. LUK, Cornell University

"The Communality Problem for Stieltjes Matrices"

11:00 - 11:30 ROBERT B. DAVIES, University of California, Berkeley

"Maximum Likelihood Estimation"

11:30 - 12:00 Contributed Papers

AFTERNOON SESSION:

1:30 - 2:30 P.R. KRISHNAIAH, University of Pittsburgh

"Computations of Multivariate Distributions"

2:30 - 3:00 Coffee

3:00 - 3:30 LOUIS KATES

"The Zonal Polynomials of Multivariate Analysis as
Special Functions"

3:30 - 4:00 KEVIN W.J. KADELL, University of Wisconsin

"The Selberg Distribution"

4:00 - 4:30 Contributed Papers

Saturday 10-4-80 R:4 1123

MORNING SESSION:

9:00 - 10:00 J.N. LYNESS, Argonne National Laboratory

"The Calculations of Trigonometric Fourier Coefficients"

10:00 - 10:30 Coffee

(SATURDAY SESSION CONTINUED ON NEXT PAGE)

" ' = 1" - .. . '- " ;'' ',- -- -: ; -- Z" :_]_,. .



10:30 - 11:00 PAUL SPECKMAN, University of Oregon

"Spline Smoothing and Optimal Rates of Convergence in
Nonparametric Regression Models"

11:00 - 11:30 MICHAEL GHIL, Courant Institute

"A Stochastic-Dynamic Model for Global Atmospheric Mass
Field Statistics"

Monday 10-6-80 RM 1105

MORNING SESSION:

9:00 - 10:00 J.L. SNELL, Dartmouth University

"Random Walks and Electric Networks"

10:00 - 10:30 Coffee

10:30 - 11:00 ROY S. FREEDMAN, Hazeltine Corporation

"Random Walks and Statistical Communication"

11:00 - 11:30 DAVID THOMSON, Bell Laboratories

"Applications of Spheriodal Wave Functions to Time Series
Analysis"

1:30 - 12:00 Contributed Papers

AFTERNOON SESSION:

1:30 - 2:30 G.W. STEWART, University of Maryland

"Matrix Perturbation Theory and Linear Regression"

2:30 - 3:00 Coffee

3:00 - 3:30 E.J. WEGMAN, Office of Naval Research

"On Computer Architectures for Statistical Algorithms"

3:30 - 4:00 ASHIS SEN GUPTA, Stanford University

"On the Applications of Special Furction, ;n To.
Standardized Generalized Variancc of t iivari,-i- ilor-
mal Populations of Possibly DiffcrcrJ Dimcnsions"

(MONDAY SESSION CONTINUED ON NEXT PAGE)

S~ - ,j
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4:00 - 4:30 Contributed Papers

EVENING:

7:30 - 9:30 Wine and cheese garden party at the Rossborough Inn

Tuesday 10-7-80 RM 1105

MORNING SESSION:

9:00 - 10:00 W.J, CODY, Argonne National Laboratory

"Preliminary Report on Software for the Modified Bessel

Functions of the First Kind"

10:00 - 10:30 Coffee

0:30 - 11:00 N.M. TEMME, Mathematisch Centrum, THE NETHERLANDS

"Incomplete Gamma Functions, Numerical and Asymptotical

Aspects for Evaluation and Inversion"

11:00 - 11:30 RODERICK WONG, University of Manitoba, CANADA

"Some Applications of Asymptotics in Statistics"

11:30 - 12:00 Contributed Papers

AFTERNOON SESSION:

1:30 - 2:30 R.A. ASKEY, University of Wisconsin

"Gamma and Beta Functions From Euler to Selbera and Their

Orthogonal Complements"

2:30 - 3:00 Coffee

3:00 - 3:30 CHARLES F. DUNKL, University of Virginia

"Discrete Orthogonal Polynomials"

3:30 - 4:00 MARIETTA J. TRETTER, The Penns.7Ivania State UivcnEit,

"Absolute Error Bounds for Edgeworth As m 1 ct;c [xpxin'ions"

4:00 - 4:30 Contributed Papers
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Wednesday 10-8-80 RM 1105

MORNING SESSION:

9:00 - 10:00 W. GAUTSCHI, Purdue University

"Special Functions: Computational Considerations"

10:00 - 10:30 Coffee

10:30 - 11:00 DONALD E. AMOS, Sandia National Laboratories

"Computations of the Central and Noncentral F
Distributions"

11:00 - 11:30 WALTER R. NUNN, Center for Naval Analysis

"The Laguerre Transform"
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THE CONFERENCE ON APPLICATIONS OF NUMERICAL

ANALYSIS AND SPECIAL FUNCTIONS IN STATISTICS

CHAIRPERSONS FOR THE CONFERENCE:

Thursday, Oct. 2, 1980 Morning: Professor Diane O'Leary
Afternoon: Professor Peter Wolfe

Friday, Oct. 3, 1980 Morning: Professor G.W. Stewart

Afternoon: Professor Paul Smith

Saturday, Oct. 4, 1980 Morning: Professor B. Kellogg

Monday, Oct. 6, 1980 Morning: Professor G. Yang
Afternoon: Professor S. Kotz

Tuesday, Oct. 7, 1980 Morning: Professor F. Olver
Afternoon: Professor B. Carlson

Wednesday Oct. 8, 1980 Morning: Professor J. Keqlson

PARTIAL LIST OF CONTRIBUTED PAPERS:

Dr. E. Cuthill
David Taylor Naval Ship R & D Center

!.on. Dr. Alexander S. Elder "Ascending and Asymptotic Series for Squares,
IC-6-80 Aberdeen Proving Ground Products and Cross Products of the Mlodified
4:30 Bessel Functions"

Dr. Jerry Leon Fields Topic: Convergence of an explicit sequence of
University of Alberta rational approximations to the hypergeometric

functions

in the region

D = {v : ]arn v1 < T, arg(l+v)l < Tr, v [-l,O]}.

Mon. Dr. James W. Longley "Modified Gram-Schmidt Process Versus Classical
I 0-6-E0 Gram Schmidt"
11:45

Fri. Dr. Clifford Spiegelman "An Algorithm for Minimizing an Implicitly
10-3-80 National Bureau of Standards Restricted Objective Function"
!1:30 (with Dr. William J. Studden, Purdue Univ.)

Kon. Dr. James 4. Walbert "Use of a Continued Fraction to Evaluate the
10-6-30 Exponential Integral in the Complex Plane"
11:30

SPECIAL HALF-HOUR TALK:
Thurs. Dr. Richard Heilberger "The Design and Construct of Test Data Sets for

10-2-qO Regression Procedures" (with Dr.'s Paul F.

4-4:30 Velleman and Agelia Ypellar)

A,
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PROGRAM SYNOPS IS

PRINCIPAL SPEAKERS
(Fifty-Minute Lectures)

R.A. ASKEY "Gamma and Beta Functions From Euler to Selberg
University of Wisconsin and Their Orthogonal Polynomials"

W.J. CODY "Preliminary Report on Software for the Modified
Argonne National Laboratory Bessel Functions of the First Kind"

J.E. DENNIS "Inside Optimization Routines"
-Rice University

W. GAUTSCHI "Special Functions: Computational Considerations"
Purdue University

S. KARLIN "Various Methods for Calculating Family Correla-
Stanford University tions With Variable Family Size"

P.R. KRISHNAIAH "Computations of Multivariate Distributions"
University of Pittsburgh

J.N. LYNESS "The Calculation of Trigjnometric Fourier Coef-
Argonne National Laboratory ficients"

C.C. PAIGE "The General Gauss-Markov Model and the Singular
McGill University Value Decomposition"

J.L. SNELL "Random Walks and Electric Networks"
Dartmouth University

G.W. STEWART "Matrix Perturbation Theory and Linear Regression"
University of Maryland

INVITED SPEAKERS
(Half-Hour Talks)

DONALD E. AMOS "Computation of the Central and Noncentral F
Sandia National Laboratories Distributions"

K.O. BOWMAN "Models for Approximating the Percentage Points of
Union Carbide Corporation Distributions"

JAMES A. CADZOW "Autoregressive-Moving Average Spectral Estimation:
Virginia Polytechnic Inst. A New Effective Modeling Procedure"

-- --' ' . , ' .. . ,

* '.. -.- I
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GEORGE CYBENKO "The Efficient Solution by Orthogonalization of
Tufts University Linear Prediction Problems for Stationary Time

Series"

ROBERT B. DAVIES "Maximum Likelihood Estimation"
Univ. of California, Berkeley

)HARLES F. DUNKL "Discrete Orthogonal Polynomials"

University of Virginia

ROY S. FREEDMAN "Random Walks and Statistical Communication"
Haze Ztine Corporation

MICHAEL GHIL "A Stochastic-Dynamic Model for Global Atmospheric
Courant Institute Mass Field Statistics"

ASHIS SEN GUPTA "On the Applications of Special Functions in Tests
Stanford University for Standardized Generalized Variances of Multi-

variate Normal Populations of Possibly Different
Dimensions"

KEVIN W.J. KADELL "The Selberg Distribution"

University of Wisconsin

LOUIS KATES "The Zonal Polynomials of Multivariate Analysis as
Special Functions"

S.K. KATTI Topic: Infinite Divisibility

University of Missouri

FRANKLIN T. LUK "The Communality Problem for Stieltjes Matrices"
Cornell University

WALTER R. NUNN "The Laguerre Transform"
Center for Naval Analysis

PAUL SPECIKMAN "Spline Smoothing and Optimal Rates of Convercence
University of Oregon in Nonparametric Regression Models"

N.M. TEMME "Incomplete Gamma Functions, Numerical and Asy-ptoti-
Mathematisch Centrum, cal Aspects for Evaluation and Inversion"
THE NETHERLAIIDS

DAVID THOMSON "Applications of Spheroidal Wave Functions fC 7ime
Bell Lfaboratories Series Analysis"

?.APIETTA J. TRETTER "Absolute Error Bounds for Edgewcrtn r)symcv.

T,, Pennsylvania State Univ. Expansions"

AJ
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E.J. WEGMAN "On Computer Architectures for Statistical
office of Naval Research Algorithms"

RODERICK WONG "Some Applications of Asymptotics in Statis-
University of Manitoba tics"

TENTATIVE SCHEDULE

This is a tentative schedule and is subject to change.

Thursday 10-2-80 9:00-9:30 A.M. INTRODUCTION

9:30-10:30 A.M. 0.0. Paige

10:30-11:00 A.M. Coffee

11:00-12:00 A.M. George Cybenko
James A. Cadzow

:30-2:30 P.M. S. Karlin

2:30-3:00 P.M. Coffee

3:00-4:00 P.M. S.K. Katt[
K.0. Bowman

4:00-4:30 P.M. Contributed Papers

Friday 10-3-80 9:00-10:00 A.M. J.E. Dennis

10:00-10:30 A.M. Coffee

10:30-11:30 A.M. Franklin T. Luk
Robert B. Davies

11:30-12:00 A.M. Contributed Papers

1:30-2:30 P.M. P.R. Krishnaiah

2:30-3:00 P.M. Coffee

3:00-4:00 P.M. Louis Kates
Kevin W.J. Kadell

4:00-4:30 P.M. Contributed Papers

Saturd:ay 10-4-80 9:00-10:00 A.M. J.N. Lyness

10:00-10:30 A.M. Coffee

10:30-11:30 A.M. Paul Speckman
Michael GhiI
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Monday 10-6-80 9:00-10:00 A.M. J.L. Snell

10:00-10:30 A.M. Coffee

10:30-11:30 A.M. Roy S. Freedman
David Thomson

11:30-12-00 A.M. Contributed Papers

1:30-2:30 P.M. G.W. Stewart

2:30-3:00 P.M. Coffee

3:00-4:00 P.M. E.J. Wegman
Ashis Sen Gupta

4:00-4:30 P.M. Contributed Papers

Tuesday 10-7-80 9:00-10:00 A.M. W.J. Cody

10:00-10:30 A.M. Coffee

10-30-11-30 A.M. N.M. Temme
Roderick Wong

11:30-(2:00 A.M. Contributed Papers

1:30-2:30 P.M. R.A. Askey

2:30-3:00 P.M. Coffee

3:00-4:00 P.M. Charles F. Dunkl

Marietta J. Tretter

4:00-4:30 P.M. Contributed Papers

Wednesday 10-8-80 9:00-10:00 A.M. WJ. Gautschi

10:00-10:30 A.M. Coffee

10:30-11:30 A.M. Donald E. Amos

Walter R. Nunn

A



ABSTRACTS OF THE 1-HOUR INVITED LECTURES

.MMAAAW



B-13

Abstracts of Talks by Principal Speakers for the Conference on Applications
of Numerical Analysis and Special Functions in Statistics:

R.A. Askey
University of Wisconsin

"Gamma and Beta Functions From Euler to Selberg
and Their Orthogonal Polynomials"

Many of the classical orthogonal polynomials first arose in a probabilistic

or statistical setting. Lagrange discovered Legendre polynomials and their

recurrence relation while solving a discrete probability problem. Laplace

used Hermite polynomials extensively in his book on probability theory.

Fisher rediscovered the discrete Chebychev polynomials while fitting rain-

fall data. Fisher's representation for these polynomials was different

than Chebychev's and could have led to the discovery of an important set of

orthogonal polynomials related to the 6-j symbols of angular momentum theory

if anyone had seriously looked at his work. From these orthogonal polvmo7-

ials it is easy to find the three term recurrence relation for

n 2 n-k 2
bn I (k k

k=O

which was used in the first proof of the irrationality of r(3). In a co7-

pletely different field, statistical mechanics, R.J. Baxter has recently

solved another two dimensional model (the hard hexagon) and he needed the

Rogers-Ramanujan identities to compute a limit associated with phase transi-

tions. These identities were discovered by Rogers while studying some

polynomials orthogonal with respect to measures that generalize the symmetric

beta and normal distributions. A brief outline of these beta functions w-i'

be given and then similar integrals in several variables will be considerei.

After work of Wishart, Fisher, Hsu, Wilks and Ingham in statistics and Siegel

in number theory, the first real break-through was made by A. Selberg in 1944,

but his work was lost for almost thirty-five years. Mehta and Dyson extended

Wishart's work to other classes of matrices and came up with a beautiful ccn-

jectured extension of the normal integral. This conjecture is easy to prove

from Selberg's integral. Many new conjectures have been formulated in the last

year or so. A few of these will be mentioned.

.... .. . IA
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W.J. Cody
Argonne National Laboratory

"Preliminary Report on Software for the Modified
Bessel Functions of the First Kind"

In our experience programs which evaluate Bessel functions of various kinds

are requested more frequently than programs for any other special functions.

This is partially because of the importance of these functions, and partially

because of the lack of high-quality transportable software for their evalua-

tion. This report on the modified Bessel functions of the first kind is :he

first of a series of projected reports surveying available Bessel function

software and laying the foundations for the development of a collection of

transportable Bessel function programs.

After brief discussions of relevant analytic properties of the Bessel func-

tions, important computational algorithms derived from them, and desirable

properties of good numerical software, we give capsule appraisals of eleven

diverse contemporary programs or program packages for the I 3essel functicns.

We then describe a modification of one of the more promising programs to

improve its performance and extend its capabilities. Finally, this extended

program and one other with similar capabilities are examined in greater

detail to determine whether they are candidates for inclusion in the proposed

package.

John E. Dennis
Rice University

"Inside Optimization Routines"

Applied statisticians often find library subroutines for unconstrained min-iza-

tion useful. This talk will attempt to explain the ideas implemented in the

best routines. We will also mention some current optimization software re=earch

directions.

.Work perfcrmed under the auspices of the U.S. Department of Energy.

Auz
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Walter Gautschi
Purdue University

"Special Functions: Computational Considerations"

We discuss computational aspects of infinite series and continued fractions

in the context of evaluating special functions, in particular, probability

distribution functions. Questions of major concern, with regard to infinite

series, are internal cancellation of terms and stopping rules for truncat-

ing the infinite series. We introduce appropriate terminology and theory,

and give applications to certain power series related to the incomplete

gamma function. We then recall briefly how various types of continued frac-

tions arise through correspondence (or association) with formal power series,

or via second-order linear difference or differential equations. We advocate

Euler's method of computing a continued fraction as infinite series. A new

theorem is presented concerning the convergence behavior of continued frac-

tions with real elements, and we show how it can be used to explain the

empirically known effectiveress of Legendre's continued fraction for the

complementary incomplete gamn:a function F(a,x), considering that conver-

gence, in theory, is only subllnear. We also draw attention to the compu-

tational advantages of a continued fraction of Schlomilch for the incomplete

gamma function y(a,x).

J.N. Lyness
Argonne National Laboratory

"The Calculation of Trigonometric Fourier
Coefficients"

A technique for the numerical approximation of sets of Trigonometric Fourier

coefficients 1 0 f(x)e2nirx dx; r = 0,1,2,... based on a common set function1 0
values f(x), i = 1,2,... ,m was described. The underlying theory is based

on subtracting out an approximation to the truncated Euler expansion which can

be integrated analytically. The method is restricted to functions havinp a high

degree of continuity, but can be used when only irregularly scaced functicn

values are available.

The calculation of individual Fourier Coefficients of an analytic functicr by

using contour integration in the complex plane was also discussed bLiefl,.
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C.C. Paige
McGill University
CANADA

"The General Gauss-Markov Model and the Singular
Value Decomposition"

The problem of finding the best linear unbiased estimate (BLUE) for the

general Gauss-Markov linear model (y,X6,o 2 Q) may be formulated as the con-

strained linear least squares problem

T(i) minimize u u subject to y =XB + Lu,

where LL = 0 is the Cholesky decomposition of the given nonnegative definite

symmetric matrix 0. When Q is positive definite L is nonsingular, and the

singular value decomposition of L 1X could in theory be used to solve this

problem. However, such an approach would not in general be numerically reliable,

and is not clearly defined when L is singular as can happen in practice.

A simultaneous decomposition of L and X is suggested which is based on

numerically reliable orthogonal transformations and leads immediately to the

solution of (i). This decomposition is valid for all ' =i X with the

same number of rows, and when L is nonsingular it immediately gives the

singular value decomposition of LI X, but without using the inverse of L.

Thus the decomposition is an appealing generalization of the singular value

decomposition, and it solves an important class of problems as well as exhibit-

ing their geometric structure.

J. Laurie Snell
Dartmouth College

"Random Walks and Electric Networks"

The connections between potential theory and Markov processes are well-known

and has very much influenced the direction of probability theory in recent

years. There are still things to learn from these connections. We show this

by discussing Peter Doyle's use of Rayleigh's short-cut method to decide if

discrete random walks are recurrent or transient. For this, one first identi-

fies the walk with an electric network. Recurrence corresponds to infinite

C - .>~-
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resistance to infinity and transience to finite resistance to infinity. The

network is then modified to obtain a simpler network. Two kinds of modifica-

tions are considered -shorting and cutting. SnuALIng decreases the effective

resistance to infinity. Thus if the network, simplified by shorting, is

recurrent so is the original. Cutting branches can only increase the effective

resistance. Thus if the network, simplified by cutting branches, is transient

so was the original this technique is illustrated by proving recurrence of

simple random walk in two dimensions and transience in three dimensions.

G.W. Stewart
University of Maryland

"Matrix Perturbation Theory and Linear Regression"

This talk surveys the implications of first order perturbation theory for the

linear regression problem with errors in the variables. It is shown how sets

of regression diagnostics measuring the effects of these errors can be easily

computed from quantities formed in the course of solving regression problems.

It is also shown that under a specific model for the errors, the classical

F-tests are unaffected.
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Abstracts of Talks by Invited Speakers for The Conference on Applications
of Numerical Analysis and Special Functions in Statistics:

Donald E. Amos
Sandia National Laboratories

"Computation of the Central and Noncentral F Distributions"

ABSTRACT

Recursion relations suitable for rapid, significant digit computation

are derived for the cumulative distribution of F' = (X/m)/(Y/n) where X is
2

~ (~m),Y is >?(n) with X and Y independent. The cumulative for F1 is given

by Bayes theorem,

P(F' 5 flm,n,X) f Gj(X:5 fmY/niY y)p(y)dy (1)
0

and where the cumulative noncentral f(x,m) is

I x p/2_
G ) = i f (*ex+z)/2Ip~~ (2)

0

and the X(n) density is given by

p(y) = -/ --~/2 yZ0(3)
2fl/2P(n/2) n 2: 1

I Pis a modified Bessel function of the first kind with p (=-2)/2.

If we integrate (1) by parts using (2) and (3), we get

P(F1' f 1 - g(lcP/1 e-. f e Z/zP2I .z) dz

- L p2eX a/2 z p/20 (,a),z) F(n/2.z/2) &:~

2~ ~ (p eX2Jr/z/iI(n/2)
0
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where c : fm/n and the incomplete gamma functions are defined by

the integrals

fe'ta'dt r(&,x) Xz~t~lt a O -

* 0

CL, while depending upon m and n, is treated as an independent variable.

The recursive nature follows directly by applying the forward

recursion relation

Tr(0+1,x) - Jx x+ - 5
r(.+l) r() * T57)(5

to (4) since, with F the ciuoative norzal,

r( ,x) = F. erfc(]) -2 F(-,)

and r(l,x)=-e-X X :,

can be identified. If we =rltiply (5) by the factors of (4) and

integrate we get

where

CLp/2 -X2W-z2p/, X F)T(P,7/2)
P8 0 e j e pr'(6)1-.12 X/2

0 (8)*

2 a (Z .), r(s1) J
0 -

and P = P(F'_< f) when 8 = n/2. In order to exploit (5), Q- must

be evaluated. A change of variables in (8), z = t2 , produces a

form for Q which can be identified by

e a2t2 tv' 1 V(bt)dt bV 2 I , , 2)

0 2•la(v (

a>0,b>O ,

n 
h

..
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;+v > 0, where f is the confluent bypergeometric function defined

by the series

f(a,c,x) E .() k k c 0 o-1,..lo
k=O W i(0

with

(a)o 1 , (a)k = a(a+l)...(a+ -1) ,~aik) k 2 1.

Notice that if a is a negative integer, the series reduces to a poly-

nomial, while for c = a, f(a,a,x) = exp(x). Thus with a =

b = ['E, p = 2$+p+2 and v = p in (9), Q8 becomes

aI_\P+1 e- k/ [ 2 ( l + aL) ]  T(P+0+1) [e- (p+P+l'p+l, P)1 (11)
Q8 . (l+"a)o F(7+)T(P~l )

where p = Xa/[2(l+a)] and the scaling e-P has been introduced to

eliminate the exponential growth in t,

t(p+o+l'p+l'P) ecAp+1) for P -cc

Now the recursion relation

a0(a+l,c,x) - (2a-c+x)'(a,c,x) + (c-a) (a-1,c,x) (12)

with a = p+S+l, c = p+l, x = p can be used to recur forward with

(7) and (11), giving

P =P+Q
8+l

A =[A /(o+I)•

= 
[ (p+2P+l+ 0 ) 8 - s8_l/(I +l) (13)

QSI = .18+1 A+

where

$- = §(P+0+l'P+iP)

:__ P+l e- X/ [ 2(OL+1) 3 r(P++1)
8 \1+a/ (1+C)8 (o+I)r(p+l)

A&A
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In order to use these recurrence relations, we must have PI §0'

§i, when n is even and PI/ 2 ' -1/2' f1/2 when n is odd., If n is even,

PI, 01 §i are elementary functions. However, when n is odd, P1/2 is

a special doubly non-central t-distribution for which series representa-

tions with error bounds are given. §_1/2 and §12 are identified in

teims of derivatives of I Bessel functions or error functions depending

on whether m is even or odd. Computational techniques and stability

considerations associated with the recursive computation of the § func-

tions are also discussed.

A quadrature for significant digit computation of P based on (4)

is also possible to cover wide ranges of parameters. The integrand is

bell shaped with a single maximum at zO . The idea is to locate z 0 from

a derivative calculation, estimate the spread a of the bell in terms of

a fitted normal distribution and integrate to the left and right in steps

of a 2a or 3a. Since the integrand is positive, no losses of significance

occur due to subtraction. This procedure takes advantage of high quality

routines for the special functions while computing only the dominant

contributions to the sum. The computation of z 0 is facilitated by sharp

algebraic estimates of transcendental functions arising from the derivative

calculation.
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K.O. Bowman*
Union Carbide Corporation

"Models for Approximating the Percentage Points of Distributions"

ABSTRACT

Many statistics in distributions such as the sample skewness

(Vb1 = /nV 2), kurtosis (b2 = m4/ml), sample standard deviation,

Student's t, present formidable mathematical problems especially under

non-normality. Even under normality, only recently (Mulholland,

Biom;etrika 1977) has the null distribution of /bi for moderate sized

samples tee found, although acceptable approximations have been given

(see for examples, D'Agostino and Tietjen, Biometrika 1973).

Mulholland nai followed an early study by R. C. Gearly (Biometrika

1947), and used a careful analysis of density discontinuities by

reference to an integral equation for the density for varying sample

size. The application of the Gearly-Mulholland approach even to a

fairly simple case such as the null distribution of kurtosis appears to

be completely out of reach mathematically.

When a set of at least four moments of a statistic exists, several

approximating models for the probability integral are known.

Outstanding is the Pearson system, introduced by Karl Pearson, and

extensively studied from a practical point of view under the leadership

of the late E. S. Pearson. The Pearson system (density y) arises from

the differential equation

.L -(x + a)
y dx (Axz + Bx + C)

-R,-earch s cpc-n ored by the Applied Mathematical Sciences Research Pro ra--,
Office of Enor'-,y Research, U.S. Department of Energy under contract
W-7'c)5-erK-26 with the Union Carbide Corporation.

A
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and a member is uniquely determined from (01,02), scale and location

being independently adjusted. In view of the many types which can

arise, tabulation of percentage points (a standard set being 0.50,

0.75, 0.9C, 0.99, 0.999 and corresponding lower levels) for a limited

domain of (/3,B2) has only been completed in recent years, and the

corresponding computer program makes heavy demand on small computer

facilities.

Complete!v different approaches use transformation systems. The

Johnson system of curves (Biometrika 1949) considers the mapping

Z = y + 6f(y) where Z c N(0,1). Here f(y) = log y produces the log-

normal, f(y) = log (y/(l-y)) produces the SB system, and

f(y) = sinh-1(y) produces the SU system. The parameters y, 6 are

determined from the skewness and kurtosis of the distribution to be

approximated, and involve intractable mathematics, especially in the

case of SB , which requires evaluation of four transcendental

integrals.

Another transformation uses T(x) = xS1 - (1-x) 62

(introduced by Tukey, and used on empirical data by Ramberg,

Tadikamalla, Dudewicz, and Mykytka, Technometrics 1979) where x is

.niform on the interval (0,1).

For the Pearson system we have introduced approximations for the

standard percentage points at some 11 levels in the form of rational

fractions ( I( 1,2)/r2(1,a2)) of the degree 3 in the parameters

$1, 2 for a domain for which 61 4 4. A linear formulation was used
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over sets of 19 points in the (0,,R2) plane, the minimum error set

being chosen. Rather than use a 4th degree version, we considered the

segments 0 4 a, 4 1, and 1 4 a, < 4, giving results with error less

than 0.5'.

With the Johnson system, we have to determine as simply as

possible, the values of y and 6 from those of 0, and 02. From a study

of cont us, it turns out for SU that a rational fraction in

( 1,62) for the variable - i2(4 + 2 2 + 3))/ I is likely to

succeed, t D~ein equal to exp(1/6 2). The analysis of the SB system

involving a',:kvward quadratures is more demanding, for 6 increases to

as the normnl point is approached, whereas y tends to - on the log-

normal line. A typical model used is for example

6 = (2-OCIe flI2L-a2+Iog(1+BI/9) )f2

where f1 ,f2 are polynomial in (P1,B2) of degree 3. Errors in the

approximation to the transformation (which once found yield all

percentage points in terms of those for the normal) have been reduced

to a few percentages for the three domains 0 4 al 4 1, 1 • I  4, a-:d

4 • 9.

We have confined attention to the problem of approximating

percentage points for theoretical statistics whose first few moments

exist; note that in many cases asymptotic series may be required using

summatory techniques to establish moments evaluations. We nearly

mention the corresponding problem for empirical data which though

simpler from one point of view, since moments and percentiles are

always available, is much more difficult when inevitable sampling

errors are allowed for.

A
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,James A. Cadzow
Virginia Polytechnic Institute

"Autoregressive-Moving Average Spectral Estimation:
A New Effective Modeling Procedure"

ABSTRACT

In various signal processing applications, knowledge of the spectral

density associated with a zero mean weakly stationary random time series

{x plays a prominent role. This spectral density is formally given by
n

S x(w) r x Wne- jun()

and is recognized as being the Fourier transform of the time series'

covariance sequence

r (n) = E{Xk

where E denotes the expected value operator. Clearly, the determinati-n

of the spectral density entails a complete knowledge of the infinite

extent covariance sequence. Unfortunately, these covariance elements are

almost never known in typical applications, and, one must therefore resort

to estimation techniques for determining an appropriately accurate

estimate of S (). This estimate is generally based on a finite set ef

contiguous time series observations as designated by

This research was supported in part by the Statistics and Probability
Program of the Office of Naval Research under Contract N00014-80-C-0303
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X1 , X2 ,... , XN (3)

Unless some constraints are imposed upon the time series' fundamental

nature, however, there exists a basic incompatability in estimating

spectral density (1) which depends on the infinite set of covariance

elements from the finite set of observations (3). This difficulty is

t halleviated by postulating the following (p,q) order ARMA model for the

time series

p q
x(n) + I akx(n-k) = b bec(n-k) (4)

k=l k=O

where the unobserved excitation {t(n)} is taken to be a zero mean white

noise series of variance one. As proven by Wald, any continuous

spectral density can be approximated arbitrarily closely by an AR\ model

if the order integers p and q are selected large enough.

The procn, to be investigated is then that of estimating the

b coefficients of this ARMA model from the given set of time serie,
k

observations (3). Although there presently exist procedures for acce1ish-

ing this task (e.g., see refs. [l]-[5]), these procedures are not very

effective in the case of small data lengths (i.e., N). In this lecture,

a procedure which has been found to be effective for both short and long

data lengths shall be developed. A brief outline of the procedure's

salient features will now be given.

The procedure for estimating the ARMA model parameters first entails

multiplying both sides of relationship (4) by x*(n-m) to yield the "basic

error elements" as given by

p
e(m,n) = x(n)x* (n-m) + I akx(n-k)x* (n-im)

k=l
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q

I bkc(n-k)x* (n-m) for m+ 1 < n < N (5b)
k=O+ 1< N 1k0 q+l m N-l

in which * denotes the operation of complex conjugation. It is not difficult

to show that if the time series is an ARMA process of order less than or

equal to (p,q), then the basic error elements are each zero mean random

variables over the range shown on the m and n variables. With this in mind,

a logical selection for the ak coefficients would be one that causes each

of these basic error elements to be as close as possible to their expected

value of zero. This objective can be achieved by minimizing the following

quadratic functional

f(ak) = etWe (6)

where e is a (N-m)(N-q-l) x 1 column vector whose elements are appropriate

arrangements of the basic error elements (5), 14 is a nonnegative definite

square matrix and, t denotes the operation of complex conjugate trans-

position. This criterion is seen to be a quadratic function of the a k

coefficients through the basic error element relationship (5a). Once the

optimal set of a k coefficients have been thus determined, the modified

Welch method [61 may be applied to identify the bk coefficients effects

on the spectral estimate.

In this lecture, a more detailed development of this new ARMA model

method shall be given. Moreover, the new method's performance will be

empirically compared to such classical spectral estimation techniques as

(i) the Box-Jenkins ARMA method, (ii) Burg'smaximum entropy AR method,

and, (iii) the Periodogram. In this comparison, it is found that the new

method significantly outperforms the classical methods.

A
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If this new method is to achieve its full potential, however, a number of

numerically based issues need further investigation. In keeping with the

spirit of this conference, these issues will be dwelled upoij and

suggestions solicited. Perhaps the most significant issue that needs

further attention is that of selecting the weighting matrix W in

criterion (6). Preliminary empirical evidence attests to the significance

of this choice (7].

REFERENCES
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George Cybenko
Tufts University

"The Efficient Solution by Orthogonalization of Linear

Prediction Problems for Stationary Time Series"

Abstract

The linear prediction problem for stationary time series has

traditionally been solved by forming the normal equations and

solving them by either classical or fast Toeplitz algorithms.

The main obstacle to using orthogonalization has been that that

approach requires an order of magnitude more computations 
(O(Np2

as opposed to O(Np)).

An O(Np ) orthogonalization technique is described for

general matrix orthogonalization which yields an O(Np) method in

the special case of linear prediction. Orthogonalization is

thereby made competative with the normal equations approach.

• . . . ,, . . " . ::.:-.
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The linear prediction problem for a stationary time series

may be formulated as a matrix linear least-squares problem, where

the design matrix has a Toeplitz structure.

Specifically, let x(n) be a time series with only

finitely many nonzero terms, so that x(n)=O for O<n<N say. The

linear prediction prcblem of order p is to find coefficients

al , .. . ,ap minimizing the expression

E ( x(n) + a1 x(n-l) + . . . + ap x(n-p))2

where the summation is over all n.

This problem occurs in a variety of applications: Wiener

filtering, stochastic model identification, speech analysis and

synthesis, and geophysical signal processing, to name a few.

Letting

a b

a-a
-/- x(N)

0iL °p 0
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o o • . 0

x(0) 0 0 • • 0

x(1) x(0) 0 0

x(2) x(1) x(0) • • • 0

0 0 . x (N-2)

o 0 . x(N) x(N-l)

o . 0 x(N)

the linear prediction problem is equivalent to solving the matrix

equation

Xpa =b

in the least-squares sense.

The traditional approach to solving these equations has been

to form the normal or Yule-Walker equations

-------------------
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TT

XF x a T xb
p p p

which is a simple system of equations. Because XT X has a
p p

Toeplitz structure also, it can be computed in O(Np) operations

after which the pxp system requires O(p 3) or O(p2 ) more for

solution. Since N is always much larger than p, the O(Np) term

dominates. Now it is well known that for small residuals,

solving least-squares problems by orthogonization is more

accurate than by forming and solving the normal equations.

However, the orthogonalization of Xp by any of the classical

methods requires O(Np 2), or an order of p more, steps than the

previously described approach. For this reason,

orthogonalization has not been used to solve linear prediction

problems.

In this paper, we present an orthogonalization technique

which appears to be new, and which is O(Np 2 ) for general

unstructured matrices, and streamlines to an O(Np) method for the

special Toeplitz structures that arise in linear -rediction.

It is shown that this procedure is the same as the

Itakura-Saito-Burg "lattice method" for linear predictive

filtering and deconvolution.

Although a complete error analysis is not presently

available, partial results indicate that the algorithm has good

accuracy properties.

.9
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"Maximum Likelihood Estimation"

ABSTRACT

Estimation of parameters for "non-standard" statistical

problems frequently involves finding the maximum of the

likelihood function or some other function related to it.

Usually analytic solutions won't be possible and a numerical

method will be required. While a variety of optimizing pro-

grams, available in the standard subroutine libraries can be

used, the likelihood function has particular properties

which it is worth taking advantage of and at the same time

the statistician has particular requirements which the stan-

dard optimization programs do not necessarily provide.

This paper concentrates on the situation whter the likeli-

hood function, its first derivative and an approximation to

the second derivative are available. Suppose 9 denotes the

vector of unknown parameters; L(D) the log-likelihood; 8(9)

= dL(9)/d(e), r (9) = E[a(9) Y(9)] = -Eo[d2L(9)/dG 2. 1 will

suppose -r(e) is used as the approximation to the matrix of

second derivatives.

In some problems, once L has been calculated, not too much

extra work is required to obtain 8 and r or if L and 6 are

calculated very little work is required to find r as well.

In these situations, it seems especially worthwhile using
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optimization methods that involve L, 8, and r if the calcu-

lation of L is expensive, if the number of parameters is

large, or if the problem is ill-conditioned. Note that r(e)

is non-negative definite (and its being singular usually

indicates an error) so that one's optimize program need not

take into account the possibility of r(G) having negative or

zero eigenvalues. The basic iterative step is

Gk+l =e + -l k

but we have found that some kind of line search, based on L

and A, is advisable.

According to maximum-likelihood theory the variance /

covariance matrix of one's estimates is approximately r-1(9)

so one would normally want this printed out, or rather, one

wants the standard errors and correlations derived from it.

Once one has fitted a model one will frequently want to test

whether it should be extended by fitting further parameters.

One possibility is simply to program the extended model, fit

it, look at the increase in the log-likelihood and so carry

out a likelihood ratio test. But a simpler approach is to

carry out Neyman's C(o) test. For this one still needs to

calculate 6 and r for the full model but only for values of

G corresponding to the old model. One then calculates 6'1ri

at the values of 9 corresponding to the old model. If the

extended model is, in fact, not necessary this term will

have an approximately chi-squared distribution.
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This also provides a very convenient stopping criterion for

the iterative fitting process. We test the hypothesis that

our current value of e is correct by calculating at

each step. However rather than using the critical points of

the chi-squared distribution for deciding when to stop, one

stops when & r1 i < .001 say. Another way of looking at this

would be to say that A'r- 1/2 approximates the possible

improvement in the likelihood. In any case the objective is

to make sure the difference between each estimate obtained

and the actual maximum-likelihood estimate is small compared

with the standard error of the estimate.

If one does calculate LP-IL at each step then the program

can also be used for carrying out a C(') test if it can be

run for just one step.

Sometimes A and P naturally factorize: a = X'Y, r = X'X

where now, perhaps, the components of Y are closely related

to the original observations. In this case one can use a

Householder transformation

X =Q (R Y =Q (Z2

where R is upper triangular and Q orthogonal so that the

basic update equation becomes k+ 1 = k + R-Z; the stop-

ping criterion becomes {ZZ 1  < .001) and r-I = (R-R)-.

This approach can be important when r is ill-conditioned

and, in fact, there seems to be more justification for it in

the present context than in the usual linear least squares

situation.

I
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This Householder approach is also particularly convenient

when one wants to use recursive fitting techniques. That is

when G is broken into two (or more) parts;

9= (91)9 2
and for each iteration of 92 one selects 01 to maximize the

likelihood.

Considering the selection of the initial values from which

to start the interative process. The techniques we have

considered so far may not be effective if one is a long way

from the correct value. Global searching may be appropriate.

However we may be able to begin model fitting with a very

simple model involving only one or two parameters which may

be able to be estimated by other means. In particular, all

"treatment effect" parameters can be set to zero. After fit-

ting the simple model other parameters can then be added and

fitted until the full model is fitted. One important attri-

bute of the optimize program would be the ability to fix

certain parameters and temporarily eliminate them from the

fitting process.

Our comments have been specifically for the likelihood func-

tion. In some statistical problems it is appropriate to max-

imize some other function, W(9) say. A maximum likelihood

program can be applied identically to the maximization of

such functions which satisfy the usual regularity conditions

and also E,[dW/de] = 0, cov9 [dW/d9,d(L-W)/dG] = 0.

|' .. . i iiii..... "- , ,,u ... .
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"Discrete Orthogonal Polynomials"

ABSTRACT

The binomial and hypergeometric are important discrete distributions.

The orthogonal polynomials for the one-variable case are the well--known

Krawtchouk and Hahn polynomials. By considering some several-variable

analogues one is led to another family of hypergeometric polynomials

expressed as balanced 4F 3-series (appearing in physics as 6-j symbols).

Special cases of these give new representations of Krawtchouk and Hahn

polynomials associated to symmetric distributions (that is, binomial with

p = , hypergeometric ()(Nax.
x N-x

1. The Hahn polynomials:

For integer parameters a,b,c we have the hypergeometric distribution

a Xcbx), with max(O,c-b) < x < min(a,c). The family of orthogonal poly-

nomials for this weight is Em(a,b,c,x) = m o(-l)J (m)(b-m+l).(a-m+l)
__ j= j 3

(-x) (x-c)mj = (-l)m(-a)m(-c) F2(-mm-a-b-l,-x ;1), 0 < m < min(ab,ca+b-c).

This is a useful notation for the Hahn polynomials (see Karlin and McGregor,

Scripta Math. 26 (1961), 33-46) and the relation is

E (a,b,c,x) = (-l) m(-a) (-C) Qm(x;-a-l,-b-l,c)

(the present notation exhibits certain symmetries, and is polynomial in the

parameters). These functions appear as intertwining functions on the smrnetric

group (consider the set of 2x2 contingency tables with row totals a and b, and

I I1
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column totals c and a+b-c; for any permissible arrangement of a+b+c objects

in a 2x2 array, there is a subgroup of permutations preserving rows, and

another preserving columns). This fact has been used by C.D. (SIAM J. Math.

Anal. 9 (1978), 627-637) to derive product and addition (b = c only) formulas.

2. Hahn polynomials in several variables:

For positive integers r, ki,k,2 ,... Z n we have the hypergeometric

distribution l) (n ) with i.x. = r. A set of orthogonal polynomials

is given by

j=1 mj J i=j+ i=j+l i  i=l i=j+l m

where mlm 2,...,mn 1 are nonnegative integers subject to various constraints

(see §R). The product is apolynomial in xI .... Xn_1 of degree 1i mi

(Pearson's X2-statistic for the 2xn contingency table can be expressed as a

weighted sum of squares of the linear polynomials). These polynomials were

studied by Karlin and McGregor (pp. 261-288 in "Theory and Application of

Special Functions", R. Askey, ed., Academic Press 1975) in the Q-form for

a genetics application, with the £i's being replaced by negative real nuzbers.

The present situation is associated to the permutation groups of a 2xn

contingency table (column totals £I 'n row totals r and 1i zi-r). The

given basis depends on the ordering of the variables, thus a rearrangement

will produce a different basis. The connection coefficients between two of

these bases form a set of orthogonal transformations, one for each total degree

limi. In the case n = 3, given the degree N, there is one free parameter m I

(note m2 = N-ml), so the connection coefficients form a family of orthogonal

functions in one variable. These were determined to be (C.D., Pacific J. Math

to appear) balanced 4F 3-polynomials, and will be discussed in the next section.

LA
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3. The discrete 4F3-polynomials:

For an integer N and parameters ab,c (positive integers in the

contingency table or group case), define a weight function

b+c-2x+l (-a) (-c) (-N) (N-a-b-c-) (-l) x

W(x;a,b,c) =b+ctx+ x!(-b) (x-b-c)

(where x = 0,1,..., N and a-N < x < min(b,c,b+c-N) if a,b,c are integers)

and the hypergeometric polynomial

P-k,k-a-c-l,-x, x-b-c-i

Pk(x;abc) 3 -N,-c,-a-b-c+N-

(a balanced series; sum of denominator parameters exceeds sum of numerator

2
parameters by 1), a polynomial of degree k in (x-(b+c+l)/2) . The

orthogonality relation is

IxW(X;a,b, c)Pk(X;a,b,c)pZ(x;a,b,c) = 6ki/w(k;b,a,c).

J. Wilson (SIAM J. Math. Anal. ii (1980), 690-701) showed that the Racah

6-j symbols could be expressed as 4F3-polynomials (his parameters are different,

and he also found continuous orthogonality relations, N replaced by a real

number).

4. Special cases of the 4 F3 -polynomials:

Recognizable and interesting distributions can be obtained by taking

b+c+l to be an integer, say -s, with s > 0. Neglecting constants one obtains

a a (-c)xthe weight ( ) s+) x A(s,x), x = 0,1,...,N where

A(O,x) = (2-6 x0), and for s > 1,

A(s,x) = (x+l) s 1(2x+s)/s!, the weight being positive for -s-i < c < 0.
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2
In general one obtains polynomials not in x, but rather in (x+s/2)2 . However

in special cases (s 0 0, -1 < c < 0 or s > 1, c = -s/2) one can piece

together two 4F 3-families to get one family of polynomials in x, a situation

analogous to the quadratic transformation for Legendre polynomials, relating

(O 9- ) 2_(1 2
(X) to P '-(2x -1) and P x) to xp(O' )(2x 2 1). The symmetric Hahn

2n n 2n+ln

polynomials (weight (a) X a ) form an example of this. Here is the even case
x c-x

(c = 2N) (the odd case c - 2N+l involves s = 1):

( ) n (N-a)n F -n,n-a- ,N-x,x-N )

Q2n(X;-a-l,-a-l2N) = ( -N) n(-a)n 4F3 -N, ,N-a

-x (3/2) (N-a+l) n, n-a+ ,N-x+l, x-N+l i

Q2 n+l(x;-a-l,-a-l
2 N) = N -) ( N)n(a) n 4F3( +3/2N-a+l ;l"

Let a = -1 to get the discrete Chebyshev polynomials (discrete uniform
.4N,

distribution), a = 2N- for the weight ( ), or let a + to get the
2x

symmetric (p = ) Krawtchouk polynomials, for example

K x, N nl N-x,x-N
K2n (X;2N ( -N) 3 F 2  b -N,

n
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"Random Walks and Statistical Communication"

ABSTRACT

1. INTRODUCTION

We discuss an application of special function techniques to

a problem that occurs in the analysis of bit error probabilities in

a certain digital communication system. Let

A-vi
Z

=4

(?e;

z= Igj

I1e-

ILI

nogk
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In the above expressions, the Q; are independent and uniformly
distributed random variables on O32ko ; n, m, w are positive

integers with n, m e w and j = V-. The problem is to determine

P1 (m, n1 and P2 (m, n).

These probabilities can be interpreted in the following sense.

We are given two drunks: each drunk takes a unit step in an arbitrary

direction. The origin is fixed at the point where drunk B starts;

drunk A is given a head start of (w-n) steps in the x - direction.

After a certain time, drunk B takes n random steps and drunk A takes

m random steps (so the total number of steps that drunk A takes is w).

P1 (m, n) is the probability that drunk B is farther from the origin

than drunk A. In this case, "farther from" is interpreted to mean

that the resultant magnitude of drunk B is greater than the resultant

magnitude of drunk A. If we are only interested in how far the drunks

have traveled in a certain direction (without loss of generality, the

x - direction), then the probability that the sum of the x - components

of drunk B is greater than the sum of the x - components of a drunk A

is given by P2 (m, n). A discussion of the original interpretation

in the communication system investigated is given in Sect-on 4. It

suffices at this point to denote P1 (m, n) as the probability for the

non-coherent case and P2 (m, n) as the probability for the coherent

case. Expressions for P1 (m, n) and P2 (m, n) will be derived below.

Simplifications involve the use of Bessel function identities as well

as the use of generalized functions.

=to boo



2. NON-COHERENT CASE
- JQ

Let -* It is well known that the characteristic

function of X in polar coordinates (see reference (1)) 1.

The addition of independent random variables yields (with k = w-m)

The first factor is the characteristic function of the sum of m

random phasors. The second factor is the characteristic function

of the "head-start." We note that the head-start can be taken in an

arbitrary direction of length k if all the other random angles are

taken with respect to the first head-start angle as a reference.

A similar argument shows

- : )

The density and distribution functions of a and b follow from Hankel

Transformations and suitable Bessel function identities. Consequently,

an expression for P1 (i, ni is

0 0

The innermost integral (with respect to u) is the density function

of b. The middle integral (with respect to t) is the cumulative

distribution function of a; i.e., the probability that a is less

than y.

After rearranging terms we note that

(7i

IL
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This formula can be proved by using the discontinuous integral of

Weber and Schafheitlein. In reference (2) it is equation (29) on

page 51. There seems to be a typographical error in the convergence

criteria in this equation. It should read

The parameters of interest are =, ,- = 0 and -

In this case, the hypergeometric function is completely degenerate

and the Weber-Schafheitlein integral reduces to the step function

represented in reference (3) as equation (9), page 406. If we

differentiate this expression twice, we obtain the unit doublet as

indicated above. The integral for P1 (m, n) simplifies to

C

This use of the Weber-Schafheitlein integral seems to have first

been used by Doyle (see reference (4)). Kluyver uses the integral

to derive an expression for the density function of b (see ref-

erence (3), page 419).

After an integration by parts we obtain

ri~ ,)1 t-

L 0)

l - -Il 
- -l , -. * ' - .. i . .-. -. -'---i - .
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The last integral cannot be simplified further. For n and m large

we can obtain asymptotic expressions for the density of a and b:

b is asymptotically Rayleigh distributed and a is asymptotically

Rice-Nakagami distributed. We find that

,_ K _

a result which agrees exactly for k-0.

3. COHERENT CASE

In this case, we do not deal with magnitudes of phasors and

do not calculate densities with Hankel Transforms. Consequently,

the following characteristic functions for Ax and Bx are

0S A

After taking Fourier Transforms and making use of the identity

we find that CV

0

j:k K 0 S IzCs~ 1

which after simplification yields

2'
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For n and m large, a and b are respectively asymptotically non-zero

and zero mean gaussian distributed. Consequently

- CA~ ~1 L

With- 2 ')/.I

This result also agrees with the exact expression for k=O.

4. INTERPRETATION FOR STATISTICAL COMMUNICATION

In our system either a "mark" or "space" signal is transmitted,

both events being equally likely. We assume a mark is transmitted.

The probability of error is given by Prob (receive space given that

a mark was transmitted). This probability depends not only on the

transmission media but also on the encoding and modulation schemes.

We will assume that a mark (or space) is encoded onto a set of w

waveforms, with each waveform suitably represented as a phasor. We

will assume that a phase reference is known at the receiver. The

effect of noise is to change the amplitude and phase of a particular

waveform. Intuitively, the more waveforms, the less likely it will

be that noise will disrupt all w waveforms. At the receiver, each

particular waveform will be detected and "hard-limited" in that the

magnitude of a received phasor will be normalized to unity if that
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magnitude exceeds a certain threshold. This minimizes the effects

of strong interference; information is still contained in the phase.

We assume that in the w mark waveforms, m contain interference and

in the w space waveforms, n contain interference. In the non-

coherent case, a mark is decided if the magnitude of the resultant

phasor sum for the mark waveforms is greater than the resultant

phasor sum for the space waveforms. In the coherent case, we

compare the sum of the values of the components in each waveform.

The error probabilities are then given by P1 (m, n) and P2 (m, n).
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"A Stochastic-Dynamic Model for Global Atmospheric
Mass Field Statistics"

ABSTRACT

A model that yields the spatial correlation of atmospheric temperature data

has been developed. It involves the solution of the potential vorticity equation

forced by random noise:

where V is the laplacian operator in the unit sphere,) and Dare longitude

and latitude, is the temperature and F is white noise corresponding to a

random realization L(..

The spatial correlation P is then computed from

P(I , 0, ; \ 2.) Q>) E I() (2)

where E is the expected value.

Three methods of solution have been tested. In the first method, Eq. (1) was

solved by expansion in spherical harmonics and the correlation function was

computed analytically using the expansion coefficients. In the second method,

the finite difference equivalent of Eq. (1) was solved using a Fast Poisson

*National Aeronautics and Space Adiminstration, Goddard Space Flight Center
Greenbelt, MD 20771

A
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Solver. The correlation function P was computed using stratified sampling of

the individual realizations of F(W) and hence of +(zo). In the third method

an equation for r was derived from Eq. (1) and solved directly in finite

differences by succesive applications of the Fast Poisson Solver. The three

methods were compared for accuracy and efficiency, and the third method was

chosen as clearly superior.

The results agree well with the latitude dependance of observed atmospheric

correlation data. The value of the parameter CO, chosen by best fit to the

data, is close to the value expected from dynamical considerations.

These results provide the basis for an optimal choice of coefficients for

statistical analysis of atmospheric data.

L lk-
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"On the Applications of Special Functions in Tests

for Standardized Generalized Variances of Multi-

variate Normal Populations of Possibly Different

Dimensions"

ABSTRACT

1. Summary. The concept of Standardized Generalized Variances (SGVs)

is introduced. Several new problems of multivariate statistical

inference are formulated on the basis of these SGVs. It is shown

that in addition to providing several new statistical tests, many

-xisting problems of multivariate tests of significance can be

regarded as special cases of these formulations and can also be

extended to their full generalities. The null and non-null distribu-

tions of these test criteria are thus of vital importance. Consider-

ing multivariate normal populations with general and equi-correlated

covariance matrices, these distributions are deduced in computable

forms in terms of a variety of Special Functions, e.g., Pincherle's

H-function, Meijer's G-function, Kummer's function, Whittaker's

function, Riemann's Zeta function and Psi-function. The highly

desirable property of unbiasedness is also established for most of the

above test criteria. Finally, applications of the above tests to a

wide spectrum of applied research are also illustrated by examples

taken from the existing literature.

A
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2. Introduction. Let X be a p-dimensional random vector variable

with dispersion matrix E. Two well-known measures of multidimensional

scatter, obtained by generalizing the variance, the univariate

measure, are E and the generalized variance (GV), Z = det(E), intro-

duced by Wilks (1932). For multivariate normal populations, Likeli-

hood Ratio Tests (LRTs) for Es, of course of same dimensionalities,

and some optimum properties of these tests are known. But, when

multi-dimensional scatter of populations of different dimensions need

to be compared, these tests cannot be defined. However, using IEII/p,

which we will nomenclature as Standardized Generalized Variance (SGV),

such comparisons become meaningful. Since IZI represents the volume

in p-dimensions, note that IE I / p becomes a measure so scaled as to

become comparable with scatter for a scaler random variable. Apart

from this generality, need for tests of generalized variances have

been also felt, on its own right. :1 being a scalar, is more suit-

able and easier to work with than the matrix E. Hoel (1937) was

probably first to realize this need and later Eaton (1967) studied

some problems of statistical inference associated with a single GV.

The GV has been extensively used in applied research, e.g., by

Goodman (1966) in Agricultural Statistics, Gnanadesikan and Gupta

(1970) in Ranking and Selection, Arvanitis and Afonja (1971) in Sample

Survey, etc. While the estimation, e.g., van der Vaart (1965),

Shorrock and Zidek (1976), and the distribution, e.g., Bagai (1965),

Mathai (1972) have been studied in some detail, little seems to be

known about tests for GVs. This paper attempts to bridge that gap

via the extensive use of Special Functions.

iA
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Suppose X is are independently distributed as NPi (piE), i

being general dispersion matrices, i = 1,...,k. LRTs are deri i for

2/Pi  -I/pi
H0 1 : li = a0 (given) > 0, for some fixed i; H0 2 :1IZ i

i/p. I/Pi
[2: I , for some fixed i and j and finally H0 3 : 1Ej i all equal,

i= 1,...,k against appropriate two-sided alternatives. The test

criteria turn out to be quite elegant multivariate analogues to those

in the univariate cases. The special case, when Zi s are equi-

correlated matrices, i.e., Ev = E where iPuv 1, u = v,

and ipuv = Pi, u j v, is next considered. As Anderson (1963) has

pointed out, the statistical inference dealing with correlation

matrices can become much more complicated compared to those dealing

with covariance matrices. However, such equi-correlated structure as

considered above is of extreme importance [see, e.g., Kshirsagar

(1978), p. 227] and has extensive applications [see, e.g., Mitra and

Ling (1979)] in applied research. After exhibiting the shortcomings

of the LRT in this case, some new tests, including one based on the

smallest chracteristic root of the dispersion matrix, are given in

this paper.

The solutions to the distributional problems associated with

the various test statistics considered above need extensive use of

Special Functions. The exact distributions for both the null and

non-null cases are presented for most of the above test criteria.

The percentage points of these distributions can be obtained from

existing mathematical tables since the distributions are represented

in suitable computable forms. Examples of construction of tables and
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the general procedure of obtaining them for such computable forms of

the distributions exist in current literature, e.g., Mathai (1979).

Further, many of the existing tables can also be exploited to give

the percentage points. Large sample approximations to the above

distributions are also presented.

Considering general E of equal dimensions, for H and H

it is shown that the 'modified' LRTs are unbiased--a result parallel

to Sugiura and Nagao (1968) on tests of covariance matrices. Total

and partial unbiasedness of some of the tests proposed for the equi-

correlated case are also established. It is shown that the same

invariant measure under the full linear group that was exploited to

prove the unbiasedness in the cases of tests for covariance matrices

can also be exploited here to establish the unbiasedness of tests for

SGVs.

3. Applications. In addition to the mathematically interesting

nature of the problem and the applications cited above, there lies a

rich fertile area for numerous applications of the SGVs. In fact,

wherever variance is employed for univariate situations, SGVs seem to

be applicable for the multivariate situations. Some examples are

cited below.

(a) Multivariate Quality Control. It is well known [e.g., see

Steyn (1978)] that testing H0 : the population mean vector p of X,

Xr - N (p (, ), remains constant during the sampling process against

the alternative that p r varies during the process, is equivalent to

..-.. .
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testing H0: CV = IZl against H1 :GV - I, where Z - (I+2D/n)Z,

D = E ' , n being the sample size. One of the many appli-

cations of this result and hence test for SGV can be seen in multi-

variate quality control.

(b) Generalized Canonical Variable (GCV) Analysis. When the original

vector can be divided into k > 2 mutually exclusive groups, Anderson

(1958) proposed GCVs to be obtained by minimizing their GV. Steel

(1951) and Kettering (1969) (in his Ph.D. thesis) have attempted to

construct such GCVs. However, no results on statistical inference

associated with these GCVs are available. Gnanadesikan (1977),

drawing from a well-known example in psychometry, posed the problem

of selection among GCVs obtained by different types of grouping. The

problem with its extension in full generality boils down to tests of

SGVs and hence can be tackled by the methods outlined in this paper.

(c) Generalized Homogeneity of Multi-dimensional Scatter. Dyer and

Keating (1980) were interested in the homogeneity of variances of the

sealed bids of 'five' Texas offshore oil and gas leases. A glance at

their data reveals that the 'five' leases are actually five groups

with different number of components. Treating the data as in an

univariate set-up, they proceeded to test for the homogeneity of

variances. However, it seems more appropriate to consider the groups

as vector variables and test for homogeneity of 'variances' of These

groups, which we can term as 'Generalized Homogeneity.' This will be

equivalent to testing homogeneity of SGVs, which is precisely H03

defined above.

-~--------.~--
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4. Distributions and Associated Special Functions. First consider
2p.

general E. s. Let S s be sample sums and product matrices, 
N. g 2

1 i 1 i

ISil N. being the sample size, i=l,...,k. Consider the setup of

Section 2. Let i be the critical region of the LRTs or equivalent

criteria for testing H 03 against both-sided alternatives, j= 1,2,3.

Two-stage maximum likelihood estimation and some judicious transfor-

mations are employed to provide the following results.

l/p 
i

Wi :;X1 = il > a0 or < al; a0,a being constants.

i/p./ l /p.

2 .X 2 
= IsiI i 1/ j > b0 or < bl; bo,b 1 being constants.

k 2 2 Nipi /2
03 :13 = 11 {g /(ENiP i S /ENiPi) < n o (constant).

i=l

Through the use of Calculus of Residues, the exact null and non-null

distributions of X is given in computable forms of G-functions,

those of 2 in computable forms of H-function and those of u = 3

being a constant, for all Ni and k but pi = 1 or 2 as,

V -/2 (n-l)/2/l(n)] k-l
fv,a Cu)= [M(2)/ITrC( aj)]Ca  (.Taj )[(27) ( 2)]

. (-log u)(n-3)/ 2 Ea (u) , 0 < u < 1

where a (u) = 1 + Zr=l Vr(a)(-log u)r if e-2nS < u < l and vr(a), a
function of Bernoulli numbers, v, Ca, and $ are obtainable when N., k

and pi s are specified. Tables for the distribution of u are given

in Dyer and Keating (1980). Usual large-sample X2 approximations hold
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for -2 loge j = 1,23. Additionally, normal and Gazma approxima-

e2 1/p

tions for Si0/IEi are reviewed. An F-approximation is provided

for the distribution of X 2 For X3P an approximation is given in terms

of Bartlett's distribution. These approximations turn out to be exact

when pi s are any combinations of 1 s or 2 s.

Next the equi-correlated case is considered. The LRT for

H0 : P, = Pi0 against H1 : P 0 P i0 (i fixed) is derived. The MLE for

Pi is shown to have some undesirable properties. A test based on

truncated Best Unbiased Estimator for pi is provided. The distribu-

tions of the test statistic for both the null and non-null cases are

represented in terms of Kummer's function and Whittaker's function.

The LRT for H is given. Additionally, a simpler test is provided
01

through a characterization of the problem in terms of the smallest

eigenvalue of the covariance matrix. LRTs and modified tests using

Isotonic regression techniques are also provided for H02 and H03.

Total and partial unbiasedness of most of the tests discussed

above are also established.

JA
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"The Selberg Distribution"

ABSTRACT

In 1944, A. Selberg [4] evaluated an important multivariate extension of

the beta integral. He showed that

1 1 n~ x-1 - (t-l 2k
(1) f 7 *f T ti (I-t1 )' I T t )tI dt I dtn

0 0 1=1 lSi<JSnn

n r~x + (J-1)k) r(y + UJ-1)k) r(14.jk)
=TT
j=lI r(x +y +(n +j -2)k) r(l +k)

where Re (x) > 0, Re~y)> 0 and Re(k)> - Re(x) Re (y)
n n-I n-i

Upon normalization, (1) gives the joint density function of our principle

object of study: the Selberg distribution with parameters x, y. k and n.

Some important limiting distributions are as follows. Let xx=y and y-a

Then (1) becomes

(Z) I n f *.f e 7: ~ ~ T~s (t1-t1 dk ... dtn
(ZO) -m J:

n r(1.jk)
T
j =1 r( + k)

Re (k) > _1, which was studied by Mehta and Dyson [3] . Forn

k= y- k = 1 and k = Z this corresponds to the distribution of the

elgenvalues of orthogonal, hermitian and symplectic matrices, respectively.
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Letting y-co in (1) yields

00 con - l ( tl 2 k

(3)...f F t Idtl..dt n

0 0 1=1 l-I<Jsn

n r(x + (j-1) k) r1l + jk)

j1 r(l + k)

where Re(x) > 0 and Re(k) > - _ R For kRe, this

ccrresponds to the distribution (see Anderson [I; ch. 13]) of the elgenvalues

of a random matrix from the Wishart distribution with mean vector 0 and

spherical dispersion matrix.

For n= 1, (1), (Z) and (3) reduce to the univariate beta, normal and

gamma or chi-square distributions, respectively. The most fundamental of

these is the beta distribution, since it has Z parameters and includes the

others as limiting cases. We are led to study the Selberg distribution where

x, y, Zk and n are positive integers. For n = 1 , this is the distribution

of the xth order statistic u (x) froma sample of x +y- I lid u(O,1)

random variables. We shall generalize this to Selberg's distribution. Let

n

(4) M = n(x+y-i) +Zk(z) .

Decompose the set of integers from 1 to M as a disjoint union

n

(I,',M)- {m,...,m n U U (SI U LI) U B1 ,
i= I1si< jsn

where

ISi1 x- I° IL1 =- 1, I s i sn and IB1 jI Zk I s s i < J s n
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The number of ways in which this can be done is given by the multinomial

coefficient

M
(it ... , *x-l, .." , x-l, y-l, ... ° y-l° 2k, " Zk)

[(x-l)I (y-l) I j (2k!1)
M

which we denote by (* ) . Let T(xy,kn) denote the number of these

choices which also satisfy (inequalities with sets hold for all elements)

(5) Si < m < 1 <L,, 1:IS n and mi < Bij < mj. I:i<Jsn

The condition (5) implies mi < mj for I s i<J :s n . Let I(xy,k,n)

denote Selberg's integral (1) . Then

(6) 1 x, Y, k, n)
nI

n x-lf... f - ti  (1"]-- T (t j-t I) dtl'-,. dt n

O<ht?.< ...<tn<l 1 1 Is<Jsn

corresponds to the distribution of the order statistics from Selberg's distribution.

We have

(7) 1(x.kn) T(x.y.kn)
n M

n! (M,
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so that the problem of evaluating (1) is equivalent to the combinatorial problem

of evaluating T(x,yk,n) Let

U <U (2) <... <U(M-1) < U(M )

be the order statistics of a sample of M lid u (0, 1) iandom variables.

Choose one of the objects counted by T (x, y, k, n) at random, with each

equally likely to be selected. Then

(8) (ti,...,tn)

2 (u(ml), U(Mz)D "",U(m))

is distributed as the order statistics of Selberg's distribution (corresponding to

(6)). Let a e S be chosen at random, with each permutp tion equally likely
n

to occur. Then

(9) crt) -- (u (M (l)) u(M cin))

has Selberg's distribution. This fact and (7) both follow by gentrating the

random variables In (6) from an acceptance-rejection procp(" xr

-
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Louis Kates

"The Zonal Polynomials of Multivariate Analysis

as Special Functions"

ABSTRACT

1. Introduction

The special functions which have received the most

attention in multivariate analysis are the zonal polynomials.

Modulo the orthogonal group, they are roughly the eigen-

functions of matrix multiplication. They provide the

natural group theoretic basis for the space of complex-

valued analytic functionals of an n x n matrix which are

both left and right invariant under the orthogonal group.

Since this space is the home of the multivariate Gaussian

density as well as others, its natural decomposition is

necessarily of interest.

The ease of dealing with zonal polynomials would be

enhanced considerably if the abstract eigenfunction property

were augmented with a concrete and explicit workable formula.

The desirability and difficulty of obtaining such an expression
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has been discussed on several occasions (James, 1975),

(MacLaren, 1975). It is our purpose to give such an

expression and note how it arises from considering zonal

polynomials as special functions defined in the group

theoretic sense of zonal spherical functions on symmetric

space. The discussion and results presented here have

previously appeared in the author's Ph.D. thesis (Kates,

1980). An attempt has been made to keep the exposition

at a fairly elementary level.

2. Fourier Analysis

We take the viewpoint of Fourier analysis on groups.

This approach has not previously been taken in the

statistical literature. It is nevertheless a quite natural

and direct approach. We proceed partly by example.

Let G = {gllg 2 ,g3,g4
} be a four element commutative

group. Let C(G) = {f : G - > C} denote the set of complex-

valued functions on G. Each function f is defined by a

four-tuple (f(gl),f(g2 ),f(g 3),f(g 4 )) showing that C(G) is

a four dimensional vector space. The operators Tg, which

act on C(G) are linear and are defined as

T ,f(g) = f(gg').g,

They have the effect of translating the graph of f by g'.

The commutativity of G implies the commutativity of the Tg
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The Tg are individually diagonalizable commuting 4 by 4

matrices and so can be simultaneously diagonalized.

Their simultaneous eigenvectors are called zonal spherical

functions and form the natural basis for Fourier analysis

on C(G).

If G is non-commutative the T no longer commute so weg

cannot simultaneously diagonalize them. However, if we

are only interested in a subspace V of C(G) then it may be

true that the T operators, suitably restricted to V, areg

commutative.

Now suppose that G is not a four element commutative

group but rather the n by n nonsingular real matrices

regarded as a (noncommutative) group under matrix multi-

plication and inversion. Within C(G), the complex-valued

functions on G, let V be that subspace consisting of those

functions which are:

(i) expressible as a power series
2

in the n elements of their

argument

(ii) orthogonally bi-invariant,

namely f(XXK) = f(X), for all

orthogonal H and K.

Let P be the projection of the vector space C(G) onto the

subspace V. Then the operators PT acting on V commute and

g
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their simultaneous eigenfunctions are called zonal

spherical functions of the pair of groups: real non-

singulars/orthogonals. They are also called zonal

polynomials.

3. An Explicit Formula
Let K = (klk 2  ... , ku ) where k 1 k ... k n 0

are integers. Suppose A. = A. (N TX XN) is the determinant1 1

of the upper left i x i submatrix of NT X TXN where X is

a nonsingular n x n matrix and N is an n x n random matrix

whose entries are independent Gaussian random variables,

each with mean 0 and variance 1. The orthogonal bi-

invariance property of zonal polynomials implies that they

depend on X only through XTX so we regard them as functions

of XTX in what follows. Our aim is to show that

kl-k 2 k2-k, knn_ k)

(*) Z (XTX) = E(A 1 2 A 2 .An_ A kn
K 1 2 1- An

by showing that (*) satisfies the eigenfunction property

and forms a basis for V. Here E means expectation.

To evaluate any given zonal polynomial multiply out

the integrand giving a polynomial in independent Gaussian

random variables, each with mean 0 and variance 1. Since

the 2mth moment of such a random variable is (2m) !/(2 mm)

and all odd mo- ts are 0, substitution yields the polynomial
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explicitly. Alternatively, one could Monte Carlo the

function k l-k 2 k 2-k 3  k n

A 1 A2  ... An

Since zonal polynomials are eigenfunctions, their

normalization is unimportant. Thus with change of

normalization (*) holds true when the probability

distribution of N is replaced by the uniform probability

distribution over the orthogonal group (also called Haar

probability measure). This renormalization is such that

the zonal polynomial equals 1 when evaluated at the

identity. We denote it C* (X TX). In one of these two

forms the formula can be used to prove many additional

facts -oout zonal polynomials as well as to reprove known

results in a more direct fashion.

FOOTNOTES

James, A. T. (1975). Special Functions of Matrix
and Single Argument in Statistics. Appears
in Askey, R. A. Theory and Application of
Special Functions, Academic Press, 497-519.

Kates, L. K. (1980). Zonal Polynomials. Ph.D.
dissertation, Princeton University.

MacLaren, M. L. (1975). Groups, Lie Groups and
Multivariate Statistics. Ph.D. dissertation,

University of Adelaide.

*1
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TOPIC: Infinite Divisibility

ABSTRACT

This topic covers a set of three papers on the topic of infinite

divisibility. Infinite divisibility has always been tucked

away in the jargon of complex variables. If we stick to integer

valued variables, then this tipic can be handled through very

simple algebra and through the use of computers whenever neces-

ary. A necessary and sufficient condition is that a series of

determinants be nonnegative. Thus the user can test for infinite

divisibility be computing a bunch of these determinants and see

if they are nonnegative. In the papers, we give proofs of

infinite divisibility using these determinants. We also give

sufficient conditions. One sufficient condition is, "If P.,
1

i 2,1,... are such that Pi/Pi 1l are monotone nondecreasi.::,

then the distribution described by P. is infinitely divisiLie."1

A side issue resulting from this extreme simplicity and "computer-

izing cf the problem and pulling it out of the rance of the

ibstract complex variables" is that we are now trying to test

for independence of observations in successive plots in a far

using the first few determinants as our test statistic.
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Franklin T. Luk
Cornell University

"The Communality Problem for Stieltjes Matrices"

ABSTRACT

The Communality Problem is very important in Factor Analysis.

The problem is that of reducing the diagonal elements of a given

correlation matrix so that the resulting matrix will be positive

semidefinite and of minimum rank. The new diagonal elements are

called the communalities. We defind a correlation matrix as a

symmetric and positive semidefinite matrix with unities along

the diagonal and fractional numbers between -1 and +1 in the off-

diagonal positions.

lany researchers have studied the Communality Problem (for a

detailed set of references, see Harman [1]). However, no effective

solution procedures have yet been devised. In this paper, we propose

a variant problem and give an algorithm for its solution. We prove that

a solution to our problem also solves the Communality problem if the

given matrix is Stieltjes.

We can state the Communality Problem as follows:

Problem 1

Given a correlation matrix R, find a non-negative diagonal matrix

D such that

(i) R - D is positive semidefinite, and

(ii) rank (R - D) = min.

IA
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Let us examine the variant problem:

Problem 2

Given a correlation matrix R, find a non-negative diagonal matrix

D such that

(i) R - D is positive semidefinite,

(ii) rank (R - D) = min., and

(iii) rank (R - D) + rank (D) = rank (R). 0

Condition (iii) is the additional constraint that we have imposed.

For convenience, we use the following notations:

Notations

We let CP(A) denote Problem 1 with A as the given correlation

matrix, and let P(B) denote Problem 2 with B as the given correlation

matrix. 0

For a given correlation matrix R, let D1 and D 2 be the nonnegative

diagonal matrices that solve CP(R) and P(R), respectively. The extra

condition for P(R) implies that

rank (R - D1) rank (R - D2 ).

We can easily construct an example for which the inequality above is

strict.

Let us describe an algorithm for solving P(R), where R is a given

correlation matrix. Let an eigenvalue decomposition of R be

R = QEQt
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where Q is orthogonal and

with E a nonsingular diagonal matrix of order r.

Let

Q= (Q, Q2'

where Q is n x r.

Define the index set

Z = {i row I of Q2 consists of all zeros), if r < n.

til,2,...,n) if r = n.

If Z is empty, we cannot reduce the rank of R without giving the

resulting matrix a negative eigenvalue. Hence we assume that Z is

nonempty. Let

Z - {i(1), 1(2), ..., i(t)}.

For j = 1,2, ..., 1, we can find a vector x i(j) such that

-1(j) "-£(j)"

The general solution is

-1 t
i(j) 

= Q 1E I QI t(J) +t

where w c N(R).

Let Y be an d x d matrix with its (j,k) element equal to the i(j)-th

element of xi(k)" Note that the elements of Y are not affected by the

choice of w in tht previous equation, as wi(j) 0 for j = 1... .

Let I be the set of indices such that for ij E I

Yij 0 for i J.

A
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Construct the diagonal matrix

Dm e t
JEe i(J)) i(Jj) "

where

i(j) yjj

Note that a i(j) is positive because

y e t  QZ-1lQte
Yjj - (j) 1 1 1 i(j)

and

£h(j) N(R).

It is easy to check that

(R- D)x i (  -o for j E I.

We can also show that the matrix R - D is positive semidefinite and that

rank (R - D) - rank (R) - rank (D).

As our goal is to minimize rank (R - D), we want to determine the

index set I of maximum size. It is known, however, that determining

such an I requires work which is exponential in X, the size of Z.

Fortunately, L is usually very small for the matrices of the Com-

munality Problem.

We next consider the case when our correlation matrix is a

Stieltjes matrix, i.e. a positive definite matrix with nonpositive

off-diagonal elements. Let D be a nonnegative diagonal matrix which

solves P(R). We are going to show that D is also a solution to CP(R).

Reference

(1] Harman, H.H., Modern Factor Analysis, University of Chicago
Press, Chicago (1976).

- AO-



B-73

Walter R. Nunn
Center for Naval Analysis

Co-authored with: J. Keilson
University of Rochester
& Center for Naval Analysis

U. Sumita
University of Rochester

"The Laguerre Transform"

ABSTRACT

A novel transform is presented which maps continuum

functions (such as probability distributions) into disc-

rete sequences and permits rapid numerical calculation

of convolutions, multiple convolutions, and Neumann

expansions for Volterra integral equations. The trans-

form is based on the Laguerre polynomials, associated

Laguerre functions, and their convolution properties.

Part 1 of this paper deals with functions having

support only on [0,-). The resulting unilateral

Laguerre transform finds applications in convolution of

such functions, inversion of Laplace transform, and in

solution to renewal and related Volterra integral

equations.

Part 2 of this paper deals with functions having

support on (- ,w) via a bilateral Laquerre transform

which is an extension of the unilateral transform.

Applications of t-is technique include convolution of

such functions and analysis of the Lindley process.

Part 1 has been published in Applied Mathematics

and Computation and part 2 has been submitted for pub-

lication in that journal.

9
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SUMMARY -PART 1

One often encounters in applied studies integral equations (161

either of form

J a(x - xl)f(x')dx' b(x)(1

or of the form

f W) - f a (x - x') f W) dx b~x (2

where a(x) and b(x) are specified functions and f(x) is to be

found. Equations (1) and (2) are said to be Volterra integral eq-

uations of convolution type of the first and second' kind respeztive-

ly. The Ne-.anr series soluticn of (2) has the fo=~ [19!

=b~x + bX) a

where t .e ,notes ccomclutit-n arz. is j th-e -l

The en~tity ,- a Ck (x) an~d matrix variants associated with
C

systems o! intecral e~uations o-; ccn-volution type arlse in oper -

ti-'ons rese_-r=! fJ , enc:necri. , ibc-.c sJi7 i

AWL ,'
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Sometimes, differential-integral equations give rise to expressions

such as

-A T (X -0 k (k+l)
s(T) = e_ (k + 1) a (T) (4)

k=O

which describes the busy-period density for certain MIG1l queueing

systems [18).

In easy cases the integral equations may be solved analy-

tically via Laplace transformation, and full answers may be obtained

when the Laplace transforms are invertible. More often than not,

such transforms cannot be inverted and expressions such as (4) are

of limited value when they cannot be evaluated explictly. The

Laguerre transformation techniques developed in this paper may

then be of value.

The deconvolution problem of finding f(x) from (1) when

a(x) and b(x) are known numerical-y, say. is particu-larly

troullesome, and start-up difficulties described belo;" may make

conventional n'mnerical procedures useless.

The Lazuerre transform techniques describe- nap czntinuu-.

functions intc zeauences, and map the continuum convolution opera-

tion into lattice convolution of these secuences. Such discrete

convolutions are well matched to modern computer competence, and

the inversion mn.;pinc back to the continui-n is direct.
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Laguerre transformation has been developed as a tool for the

solution of differential equations [12). The applications of

interest here are quite different and new tools have been needed to

convert the underlying simple idea into a flexible working proce-

dure adapted to computer requirements.

The first section introduces the Laguerre transform

(fL+
T: f(t) ( ) in a form convenient for our needs. One hasn 0

f( E ()L (5)
n=O

for any square-integrable function f(i) on (0,-), where Z (-) =

L (t)e- T/2 are the classical orthonor.al Laguerre functions an:
n

SL~ (7) are the Laguerre polynomials. The notation of Abre-nowitz

and Stegun [I 1 is employed throughout. Orthcncrrma:ty provics

the inverse transfcr-ation

L t fo = ( Td -.fn 

O

Let Tf (u ) = 0 n be the generating function cf ref0 n-n

one has, as shown in Section 1,

~I

L~i aL ___

(u = ---- ** ~ ~ "
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where O(s) is the Laplace transform of f(T). This relationship

permits evaluation of fLt for many important f(x).

n

Section 2 provides simple examples of the transform, and

Section 3 discusses the structure of Tf (u) in the complex u-

plane. Such insight into structure in the complex plane is crucial

to many of our algorithms and theorems.

Algorithms for the calculation of the Laguerre coefficients

are presented in Section 7. Section 8 is devoted to a discussion

of the deconvolution problem.

A variety of numerical examples of the method are treated in

Section 9, and the implementation of the procedure is discussed.

Section 10 describes interpolation methods and proie-s when

the known functions are known only numerically.

A fina2 section deals with pcssile general- -tions c: the

method tc special fa-ilies cf functions.

.. A
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SUMMARY - PART 2

In a previous paper, hereafter designated by [A], a description was

given of a Laguerre transformation which maps a function f(T) in L2(O0,-)

into a sequence (f# ) on the nonnegative integers. Moreover, for twono

such functions f(T), g(T), the convolution f(t)-g(T) is mapped into the

lattice convolution (f*g) = I f# = ((f#)*(g ))n One obtains therebyn 0 nmg = D (  
. oban nhereb

an algorithmic basis for the computation of multiple convolutions f(k)(r)

and related infinite series of importance to statistics and applied proba-

bility.

Such Laguerre transforms have one-sided functions as their natural

domain because the Laguerre polynomials L n() and Laguerre functions
eT/2

n (t) = (T)e are associated with the one-sided weight function

-T on (0,-). Nevertheless, the methods have a simple extension to two-

sided functions on the full continuum (- , =) via the san:e Laguerre

functions as we will see.

A variety of applications exist to statistics, operations research,

and engineering. In statistics, for example, one has need for multikle

convolutions cf two-sided distributions unavailable anai,:,ca .y, tha:

of the logistic distribution, for example. Even relatively 2nnocuous

distributions such as the Laplace distribution convolve with difficulty.

In operations research studies dealing with queues, inventories and

storage systens, one encounters as a structural entity j3' the extendee

renewal density h(x) = a(k)(x), where a(x) is a probability density
1

function with two-sided support. Fcr many densities of interest, evalua-

tior of h(x) has been resistant.

-.. . ... .. .. ... . _. .+
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In the earlier paper [A], the crucial role of the complex plane in

the formulation of the algorithms was evident, even though the algorithms

were entirely in the real domain. For the bilateral transform, the com-

plex plane is again very much present, with Laurent expansions, bilateral

Laplace transformation and conformal mapping entering as crucial tools.

The first section extends the earlier formalism to the full continuum.

That this extension is natural, and not just an artificial piecing together

of the formalism for each half-line, will be clear from (1.9), (1.12) and

(1.13). The harmony of the basis will also emerge vividly in Section 3,

which deals with the extent of the transform coefficients, and associated

uncertainty relations. The topic of extent is crucial to the utility of

the Laguerre transform method as a numerical tool. Numerical examples are

presented in Section 5. A table of contents provides the reader with an

overview of the paper.

7Two references (V. I. Krylov and N. S. Skoblya [8], and V . 7. Weeks [i:j
have come to the authors' attention subsequent to publication of [A]. Bc!-.
deal with the use of Laguerre functions for the numerical inversion cf c-,
sided Laplace transforms.
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Paul Speckman
University of Oregon

"Spline Smoothing and Optimal Rates of Convergence
in Nonparametric Regression Models"

ABSTRACT

1. The model. Consider the nonparametric regression

model

Yi = f(x.) + c. i 1,...

where observations are taken at distinct points assured for

simplicity to be in [0,I]. The usual assumptions on the

2
random errors are in force, i.e., EE. = 0, E . . = . ,

but the response function f is assumed only to be sufficiently

smooth so that 1if(k)H 2 . J" f () 2 dx  exists and is finite.
0

This model is motivated by certain robustness consider-

ations. For small CL > 0, the class [f: f has k-1 abs. cont.

derivatives, Mf3(k) < can be viewed as a collection of

response functions at least locally well approximated by

polynomials of degree k-i (or order k). If a regression

method is uniformly good in this class, it is robust to

arbitrary small departures from the standard kth order

polynomial model (see [7]). This concept is also related to

the models of Sacks and Ylvisaker [6].

2. A basis for splines and the proposed estimator. A

variant of spline smoothing is proposed which is most easily

A
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expressed using the basis of Demmler and Reinsch [2]. Given
i IxI  ,Xn] j~~2kdeoetende-

*a distinct knot set [x1 ,...,Xnl, let -Pn denote the n dimen-

sional space of natural polynomial splines of degree 2k-I

wit i simple knots at the prescribed points. There is a basis

for J2kn along with eigenvalues t.x i) =

delri.,ined (essentially uniquely) by the conditions

n! r= i(x )C_(xt i

ni 0) (x) pj (x)d" = .
"0 '3

,, 1 yi j (xi). (Note that . is the leabt squares

n
1S 1,:iLOr of -. if . T v. E 2' ) With t!i3 I'a,; i,.

J j=l ~J I

tIL fOmi~y vf estimators to be studied, indexed by .p,,,i,;ctor

X- 0, has the form

n
f (x) = 7 (l-i.)+icpi (x).

i=l 3

One can see that f is a natural polynomial spline, but it

is not the smoothing spline of Reinsch [5].

3. Optimal rates of convergence. The purpose of

introducing f is that it is minimax in the following sense.

Let c5 be the class of all estimators f which are linear

in the observations. (Clearly fX E c.) For fixed f and
1n2

f - 3 define T(f,f) -Z~ (f(xi)-f(xi))2. Then the next
ol [

result follows from Kuks and Olman [4].
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THEOREM 1. min max ET(f,f) min max ET(f,fj)
.(k) X I (k) 1fEc lif k 6 Hf h

mn[2X + 2 n 2

x i=l

From the last expression, the minimax rate of convergence

of ET(f,fx) is seen to depend critically on the eigenvalues

.,' I. I'd. In this paper an approximation is given when the

x,'s are equally spaced, although similar results undoubtedly

holu ior any setting where the points are suitab], r&.ur.

:L.. K ; tool is an estimate first given by Utreras [- and

duL' i, the form here to the author.

LEM>iA. For k : 2, there exist constants dk  such Chat.2kk

X. = d k - (i+o(l)) uniformly in j for j = O(n 2 /( 2 k+l)).

With this estimate the best possible uniform rate of convergence

follows.

THEOREM 2. For equally spaced points and k - 2,

min max ET(f,f) = n- +  (Go) (1 + o(i))

where ck(al,) is a constant depending only on k, a, and o.

This rate compares with recent work of Stone [8]. There

the same rate is obtained under weaker conditions but without

the exact constant.

In the usual situation there is a single fixed but

unknown f. Let X be the minimizer of ET(f,fX).
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LEMMA. ET(f,f n -2k/ (2k+l1) c(tIf (k)IIac)(l+o(l)) and

l/(k+1))

4. An adaptive estimator. Since in practice neither
(k). ,
ilf nor c is generally knowni, an experimentor is forced

to choose, subjectively or otherwise, some value of the

simtoothing parameter X to use. This problem is characteristic

o~i virtually every nonparametric regression method. The p3ro-

;thL :-L is to estimate X by WahV'a ' s method of LIhr i: 1t-

casvalidation. The main new result is weak coflsi!teflc\' and

asymptotic optimality of the resulting adaptive method. This

procedure is closely related to the one in Craven and Wahba [I]

wh,2re ordinary smoothing splines are used. However the con-

sistency result here is much stronger.

Since f xis a linear estimate, there is an n x n

mnatrix A('X) such -that fx (f x(Xi)i**.,f %(x n))' =A(X)y.

Then the cross validation function is defined to be

V (00 1 ) y-f 112/ 'Tr( ())2n n n

Also, redefine

Tn (X)) Enj x )- ).(x1  T(f, fQ

Then a straight forward application of the CCV theorem of

Golub, Heath, and Wahba (31 yields

EV ())-a 2-ET 0).)n n o(l)
n
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uniformly in 0 - 1 X where k 0 is some sequencen n

satisfying Xn/- n # 0. This implies that the minimizers of

EV n(X) and ETn(X) asymptotically coincide. If in addition

normality is assumed, the following much stronger result is

true.

LEMMA. Suppose the distribution of Y. is normal for
Sn2

i...,n. Then there is an estimator n of c such

V MX-0 -ET (X)_
n ET n op(l)

n

0uniformly in 0 X t X n From this the main result follows.

n

THEOREM 3. Let X be the minimizer of ET (X). Under the
n n

assumptions above, there is a sequence of (possibly local)

minimizers (Xn  of Vn (X) such that X'n/X n 1. Moreover,
Tn( n)/ETn( - 1.
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"Incomplete Gamma Functions, Numerical and Asymptotical
Aspects for Evaluation and Inversion"

ABSTRACT

following topics will De discussed:

- The asymptotic expansion of integzals of the type

F~x)=,.c -at2

E, (x) = (a/,) e f(t) dt, a -c

"-hich is uniformly valid with respect to x in a domain that contains

x - 0.

- Tie inversion (for large a) of F (x); i.e., the computation of x froma

tn equation Fa (x) = q, where q and a are given (a large).a

- T numerical evaluation of the incomplete gamma functions for largc

vaiues of their parameters. The algorithm is based on the asymptotic

rez:esentation of F (x).a

- The inversion of the incomplete ganma functions for large values of

tneir parameters.

We suppose that in (1) f is analytic in a domain of the complex

t-plane that contains the real axis, and that f(t) > 0 for real (finite)

t. Furthermore we suppose that F a(--) = 1. Several distribution functionsa

of mathematical statistics can be written as (1), for instance the

incomplete gamma functions. The function f may depend on a; we are

,1.lowing a representation

A1
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f t)f~t M n a
n

n=O a

in which f and f have the same domain of analyticity.n

The asymptotic expansion of Fa (x) is obtained by an integration by

parts procedure. It has the form

0 A 2 B (x)
(2) Fa(X) - erfc(xai) -R + e- n

n=O a n=0 a

The A and B are defined recursively in terms of f. They have the samen n

domain of analyticity as f.

The inversion of F (x) = q, 0 < q < 1, is for large a based on (2).a

First we solve by using known algoritims the equation

2 erfc(xa?) = q,

giving for x an approximation x0 . Then a, asymptotic expansion

+i I
X X 0  a-l ' 22

a

is derived, in which the x are expressed in terms of f, for instancen

ln 1 + f(x0 ) - f(0))
xI = Xo

The expansion is especially useful in the neighborhood of x = 0, i.e.,

for valuef- of q near . Numerical experiments for the case of the

incomplete gamma functions show uniformity of (3) with respect to

q E [0,1]. For these functions more information on xn will be given.

In general, the expansion in (2) is too complicated for numerical

computations. This will be illustrated for the incomplete gamma func-

tions (see also [I]). An altecnative is proposed, which in part is based

on (2), and which gives an efficient and reliable algorithm for the

computation of

(1 rx -t ta-1 dt, Q(a,x) - e - t t a - 1 dt,

(4) P(a,x) = a- 10 r(a) x

for a and x large near the critical line x = a. The algorithm runs as

follows. Introduce for x -> 0 and a > 0
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(5) X = x/a, n = {2[i-1-ln X]}'

with sign n = sign(A-1) (X > 0). Then (see [])

P(a,x) = erfc[-(a/2)in] - Ra ()

(6)

Q(a,x) = erfc[ (a/2)irj] + R (n)

and R (r) has an expansion as the second series in (2). The function

S (Ti) ina

S 2

Ra (ri) - (a/2-)' e-2a  S a(T

,s for a > 0 and - ]R slowly varying and it is analytic in a neighborhood

o: 1) = 0:

k,7) Sa(n) = Sk (a) tk  Im < 2Tr'.
a k=0

It satisfies the differential equation

S (n) + a S (n) = 1 1
dna a * A-iP (a)

* a a
where F (a) = (a/27)2 e a- a(a) (a > 0), the relation between rj and A

being given in (5). The sk in (7) are easily obtained from a recursion

relation, which for numerical applications is used in backward direction.

Instead of (7) we can expand S a(n) in Chebyshev polynomials

T k (r/n0 ), for some r10 > 0, yielding an even beter expansion. In botl

cases we obtain expansions, which converge faster as a increases, and

from which S a(n) can be computed for, say, -1 < r] < 1, or equivalently

for 0.3017.. < A < 2.357 .... This gives an algorithm for the functions

in (4) for

0.3017a < x < 2.357a.

Initially we supposed large values of a. The algorithm works quite well

for a -> 5.

[ll N.M. TEMME, The asymptotic expansion of the incomplete qamma functions,

SIAM J. Math. Anal. 10, 1979, 757-766.
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"A-' I ;cat ions o; ,;:heo' , . Wave Functions to
Sn eries Analv

ABSTR-ACT

Given a finite sample of a process some of the major problems of time
series analysiN are those of testing for the presence of a line component, choos-
ing an algorithn to estimate the spectrum so that the estimate is not dominated
by bias, ensuring that the estimate is consistent and statistically meaningful,
and maintaining these properties in the presence of minor variations of assump-
tions. Despite a long history these problems are still lacking satisfactory solu-
tions in all but the simplest cases.

We assume a finite sample {x0. x, 
.

"xv-- I o f a w i d e se n se st at io n-
ary time series having the centered Cramer representation

'2 2 ( 1t)

x, f e dZ (v)

The extended Cramer representation permits a distinction between harmonic
analysis and spectrum estimation: harmonic analysis is concerned with the first
moments of d( , ), while spectrum analysis is the problem of estimating 'he
second moments of dZ ( v ).

These moments are estimated as functions of the discrete Fourier
transform of the observations which, for notational simplicity, it is convenient
to define in centered form:

N - I -i2 ffn - I )
i(f - e 2 xn

n -0

Using the spectral representation for the data in this formula we have

£(f) - siPrfT snrf-) dZ~v (1)

I. - sin rm (f - s,)

which is the convolution of the Cramer process, dZ ( v ), with a Dirichlet ker-
nel.

In these paper we give a new solution to these problems obtained by
applying a -localized" Karhunen-Loeve, or principle components, expansion in
the frequency domain to estimate the moments of the Cramer process, dZ (v).
From this viewpoint equation (I) is best regarded as a linear Fredholm integral
equation of the first kind for dZ ( v ) and, since detailed information about the
eigenfunctions and eigenvalues of the Dirichlet kernel have recently been pub-
lished by Slepian 11978], it is feasible to attempt it's solution. These cigenfunc-
tions, denoted by Uj (N. W;f ), k 0. I. N .N-I are known as discrete pro-
late spheroidal wave functions and are solutions of the equation:

Z
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W 
s i n N r(f - f ' ) Vk (N. W;f')df'=Xk (N. W)'Uk (N. IVf)

-_ sin T(f-f)

Because the Dirichlet kernel is degenerate it is impossible to obtain exact or
unique solutions; what we attempt is an approximate solution which is both
numerically and statistically plausible.

Within this framework the harmonic analysis line test procedure becomes
essentially an analysis of variance applied to the coefficients of the cigenexpan-
sion and so results in an approximate likelihood test. Similarily, from the spec-
trum estimation viewpoint, the technique used to approximately solve the fun-
damental integral equation results in an estimate which is data adaptive and
computationally equivalent to using the weighted average of a series of direct
spectrum estimates made with ortlogonal data windows ( discrete prolate
spheroidal sequences ) applied in the time domain. Since the expansion is
applied in the frequency domain it is insensitive to minor departures from nor-
mality and the time domain aspects of the procedure permit it to be easily
robustified against gross outliers.

While this procedure is philosophically very different from the various
autoregressive and maximum-entropy methods currently fashionable the
analysis of variance procedure provides considerable insight into the "super-
resolution" question. Further, in addition to providing estimates of the spec-
trum which are based on well-established principles instead of heuristics this
methodology also permits a resolution of the differences between windowed and
unwindowed philosophies.

Slepian, D. 11978] Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncerainty- V: The
Discrete Case, Bell System Tech. J. 57 pp 1371-1429.

ItI
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"Asolutc Eroro Bounds for Ei.eworth Asvmptotic
[XD",A1P l OI S"

A B: T PA UT

I. Introduction

In this paper, we propose the use of MACSYMA to aid in
obtaining absolute error bounds for a class of asymptotic ex-
pansions. The uniform asymptotic expansions of interest here
are those referred to in statistical literature as Edgeworth
series. The Edgeworth series can produce quickly converging
and accurate approximations to statistical distribution func-
tions whose computations are ordinarily intractable. This is
especially true for noncentral distributions with large para-
meters which include the noncentral beta and gam':na distribu-
tions. Unfortunately, the only way to determine the accuracy
of these asymptotic expansions is by comparison to known
values.

The plan of attack in determining error bounds is to use
MACSYMA to find a continued fraction 'corresponding' to the
asymptotic series. Bounding an asymptotic series or summing
a divergent series via continued fractions is certainly not
new (Wall [10], Henrici [6], Shenton and Bowman [9]). Ho.'-
ever, this will be the first time the technique has been
applied to the rather complex Edgeworth series. This fact is
not surprising because the proposed technique would be more
than formidable without MACSYMA.

2. The Edgeworth Series

Various derivations of the Edgeworth series can be found
in the statistical literature. See Berry [1], Draper and
Tierney [3], Esseen [4], and Hsu [8]. We prefer an exposition
similar to that of Hill and Davis [7], because the series is
presented in an explicit, easily programmable form, which
eliminates the bother and possible mistakes in the production
and use of numerous tabled constants. See Draper and Tierney
[3].

Given a random variable, X, with pdf, f(xJO); where Oisa

possibly vector parameter. The characteristic function (cf)

(or Fotirier-Stieltjes transform) of f(xjO) is denoted:

x(tI0) = E[exp(itx)] = fo exp(itx)f(xlO)dx. (2.1)

If a power series expansion in (it) exists for
In x(tIO), i.e.,

A
*1'
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in x(tIO) = X Kx(j) (it)J/j , (2.2)
j=1

which is usually valid only if Iti < 1, then the coeffi-

cients, Kx(j), of (it)J/jI are the "cumulants" of the distri-

bution of the random variable, X.

This starting point for developing the Edgeworth expan-
sion is closely related to the central limit theorem, in that
we can view the random variable, X, as being the sum of

n = a = KX(2) independently and identically distributed
(iid) random variables. The cf of the sum of n iid random

variables has the form [¢(t)]n. Clearly, if the cumulant

2 aexpansion (2.2) exists, x(tjO) = [exp{(in4x(tIO))/a }]
which implies that the random variable, X, can be viewed as

2 2the sum of n = a iid random variables withcumulants KX(j)/aF

If we make the transformation, Y = (X-p)/a, and note
that the cumulants of the standardized random variable, Y,
are:

Ky(1) = KX(l) - = 0,

Ky(2) = KX(2)/o 2  1 , and (2.3)

Ky(j) = Kx (j)/aj, for j > 3;

we can write the cf of Y in terms of the cumulants of X:

y(tIO) = exp t2/2 + 3 Kx(J)(it/G)Jj I

= z(t) exp X(j)(it)J+2/(aJ(j+2)1) ; (2.4)

=2 adet 2/2where X(j) = Kx(j+2)/a , and OZ(t) = e -  , the cf of a

standard normal random variable. Cearly, if lima %(j)/aJ =0,
then lim 0 +, y(tlO) = Oz(t), or the limiting distribution of Y
is standard normal. This is the case for each of the four
distributions we have investigated.

A
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Expanding the exponential of (2.4) in a Taylor series,
we have:

y~t 0) = z (t) I+ [ x(j)(it) j+21(GJ(j+2)1 kI ;(2.5)
~ kwl i

which is valid for Itj < 1. The fact that the series (2.5)
is not valid for all t was the source of some confusion re-
garding the convergence properties of the Edgeworth series
(see Fisher [5]). Cramer [2] ended the claims that the Edge-
worth series is convergent.

Now, if we expand (2.5), collecting terms with the same

power of a, we have a polynomial in (o- ) whose coefficients
are polynomials in powers of (it):

cy(tIO) = z(t) I + _B (it)a -j  (2.6)

where B1 (it) = X1 (it) 3/31,

B2 (it) 2 (it) 4 /41 + A2(it) 6/((3!)221), and

B3 (it) = A3 (it)
5 /51 + AiA2(it)7(314!) +A3(it)9/(31)

etc.

With a minor modification of the notation used by Hill and
Davis [7], we can develop a general expression for B.(it) as

follows.

Denote by R j, a partition of the positive integer, j,

into £ positive integers:
sp, pl k k

fj = [ ' . . Sk] ' j = PiSi '  P i ,  (2.7)
i~l i=l

and define three functions of the partition, R.

k

m(lj) = Pi(si+2) = 294-j, (?.8)
a (t i=l t

a(TIj) = iPi ( (s i+2 ) t) ,j and (2.9)

A
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x(1. H pir (2.10)J i=li

Combining equations (2.8), (2.9), and (2.10), we have:

B.(it) = a(TL)X(Hj)(it) 2 + j ; (2.11)

where the simmation is taken over all distinct partitions of
the integer, j.

The next step is to invert the cf (2.6) to cover the pdf
of the random variable, Y. The inversion formula is:

fy(ylO) = (2T)ifw_ exp{-ity} y(tO)dt. (2.12)

Applying (2.12) to (2.6), which is valid only for Itj < i,
produces the Edgeworth series for the pdf. Note that the
result does not equal fy(yIG) because the range of integra-

tion exceeds the radius of convergence of the expansion.

To apply (2.12) to the expansion (2.6) term by term, the
following two results are required:

a) From Fourier analysis,

(-l)J (y) = (2z)- f_ (it) j - l exp{-ity-t 2 )/2dt; (2.13)

where (J)(y) = the jth derivative of a standard normal cdf.

(Note: O(y) = fz(y). )

b) From Rodrigues' Formula for Hermite Polynomial:.,

0(1)He(yjj-l) = (-l)J-lO ( j ) ( y ) .  (2.14)

Applying (2.13) and (2.14) to (2.6), the powers of (it) in
(2.11) can be immediately replaced by the corresponding
Hermite polynomial, yielding the Edgeworth asymptotic expan-
sion for the pdf of the random variable, Y:

(^ n _

fy(YI O ) fy(Ylo.n) = ()1 )(y){l+ _ Cj(y 0};where .P 15)

C = a(Hj) X ()lie(y2I 29+j) (2.16)
S... ......

3I

- -- . . .... " . .. , . *°1



B-9 5

Finally, to get the cdf [Fy(YI0) = f_ (uO)du]. the inte-

gration is performed term wise to yield:

Fy(ylO) = Fy(ylO,n) = 4(0)(y) _ 4( 1 )(y) I D(y)j }; (2.17)
1 j=l j

where D.(y) are the same as Cj(y) except each Hermite poly-

nomial is reduced in order by 1, i.e.,

D.(y) = a(Hj)X(I.)He(y121+j-1). (2.18)
Hj

3. Determining a J-fraction Corresponding to the Edgeworth
Series

To generalize the Edgeworth series, let f(y]O,o) be a

function of y, depending on a possible vector parameter, e
and o. Then the Edgeworth expansion of the function is

f(y[o,o) =I P.(Y-O)cj, with Pj(yje) polynomials. Wall
~j = 0 J ~

(pp. 362-3) [10], gives several criteria for establishing the
existence of a continued fraction, J-fraction in Wall's
terminology, corresponding to a given power series. The
J-fraction is of the form:

a
0

b I+c- a 1
a+a -

If the Edgeworth series had been derived directly from the
Fourier-Stieltjes transform, without going through the
various transformations and rearrangements, the existence and
convergence of the J-fraction could be established in a
simpler manner (Henrici [6]). However, for the Edgeworth
series, the path of least resistance seems to be to use a
uotient-difference type of algorithm (Henrici [6], Wall
10]), to determine if a tractable law for the J-fraction
coefficients exists. This is where the powerful functions of
MACSYMA can be used; i.e., the algorithms can be implemented
symbolically and hopefully the resulting expressions will be
reduceable to the point where some law of formation can be
discovered. [Note: in the quotient-difference type algo-
rithms, the coefficients of the J-fraction are obtained in
terms of the coefficients of the Edgeworth series.]

A
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A starting point would be to try the above approach on
one of the simpler Edgeworth expansions, such as that for the
incomplete gamma function. Assuming success here (or fail-
ure), one could approach the Edgeworth series for central and
noncentral beta distributions. If the law for the J-fraction
coefficients can be determined through MACSYMA, then the next
step is to try to establish convergence of the continued
fraction to the desired function. Doing that, the Edgeworth
asymptotic expansion can then be bounded through the J-frac-
tion.

4. Conclusions

Perhaps the application of MACSYMA to the problem of
bounding Edgeworth asymptotic expansions will not produce any
good results. In any case, it can be no less successful than
the many previous attempts by other methods. It is hoped
that the occasional orderliness of statistical distribution
functions will surface in this attempt.

~~I
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"On Computer Architectures for Statistical
Algorithms"

ABSTRACT

Statisticians have recently been concerned with robust regression concepts.

Introduction of M-estimation procedures somewhat extends the computational

burden over ordinary multiple linear models with normal errors, but does not yet

begin to test the computational capabilities of modern computer architectures.

Consider, for contrast,a reasonably straightforward application in image

processing. An image may be represented as a function, f: R2-+R, taking the

real plane into the real line, z - f(x,y) being the intensity at point (x,y)

and x and y be respectively the horizontal and vertical locations of a point

in the image. A very simple noisy picture may be represented as a regression

problem by

zij - f(xi, yj) + Eij ()

where the cii are the usual white Gaussian noise. This problem corresponds

to a snowy TV pieture in weak reception area. Since f in general is a strongly

nonlinear fLunction of xi and yj it is clear that some nonlinear nonpara:?t:ic

regressiLu methodology is necessary even in this simple case. Perhaps the

clo7 st work to solving this problem is that of Wahba (1979). See also

Wegman and Wright (1980). Even this spline approach is not entirely adequate

since splines are required to be smooth and an image may have very sharp
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discontinuities (high contrast). In certain satellite remote sensing appli-

cations, imaging sensors operate at very low light levels where individual

photons are counted. The white Gaussian noise assumption is then replaced

by a Poisson noise distribution. Moreover since these light levels are in

a nonlinear response region for film or other imagers (due to so called

reciprocity failure), the additive noise assumption is no longer appropriate.

Thus a regression model might take the more complex form

zij = f(xi, yi) o Cij (2)

where o is a nonlinear binary operator and Eij (to coin a phrase) is dark

non-Gaussian noise. To complicate the picture even more, we could ask for

color images which means that f must be a vector valued map, e.g.,

f: R2 +R3 . We might model this as

(rij , bij, gij) - f(xi, Yj) o C j (3)

where rij , bij and g J represent the red, blue and green components of the

image. Notice that rij , b and &iJ will in general be correlated random

variables. One further complication is to suggest we might be interested 'n

a motion picture. We thus introduce a time series aspect to our evolving

model which now may look like

(rijk. bijk' gijk) = f(xi, Yi' tk) o Eijk . (4)

and clearly f: R3+R3 . To put some simple numbers to this example will help
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clarify our point. Even discounting the computational burden required to

estimate f in the first place, a high resolution image normally is

represented digitally on 1024 x 1024 grid (of pixels). Thus each image

requires 220 evaluations of f (itself a vector-valued function). For a

simple 20 minute film there are 28,800 images. If we were doing the digital

processing image by image, this would mean we had 28,800 nonlinear, non-

parametric non-Gaussian regressions to do and to evaluate each of the 28,800

vector-valued function estimators at 220 points. All this is required to

process digitally 20 minutes of color film taken in poor light, a relatively

realistic assignment. The dimensionality and sample size requirements

clearly demonstrate the need for innovative development of statistical

algorithms based on a sound knowledge of modern computer architectures.

Some recent developments in microelectronic technology have revolution-

ized computer design. Very large scale integrated circuit technology (VLSI) has

revolutionized the concept of central processing units. VLSI circuit chips

now can contain a multiplier which makes parallel and network arrangements of

processors possible in a relatively inexpensive fashion. Processors may be

connected, for example, not only in parallel arrays but in orthogonal or

hexagonally connected arrays. Such innovative computer architectures allow

for a totally different approach to algorithm development. Some examples

using matrix manipulations suggest that statistical algorithms for multi-

dimensional data can be formulated in a fundamentally different way. See,for

example, Kung and Leiserson (1978) or Mead and Conway (1980). Le advocate
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an organic approach to algorithm development. That is, rather than having

a theoretician develop a formula which is then translated by a programmer

to a computer algorithm, we think there is much to be derived from an

integrated approach.
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"Some Applications of Asymptotics in Statistics"

ABSTRACT

In the study of probabilities of large samples one

often encounters integrals of the form

b
(1) I f (x) [ f (x) ndx,n

a

where O(x) and f(x) are continuous functions defined on the

finite or infinite interval Fa,b] and f(x) is positive there.

Long ago, Laplace made the observation that the major con-

tribution to the integral should come from the neighbourhoods

of the points where f(x) attains its greatest value.

Furthermore, he showed that if f(x) attains its maximum

value only at the point in (a,b) where f' (E) = 0 and

f''(0) < 0, then as n -

(2) I E #( ) f(&)]n+ -2 } .

n nf''(0

This formula is now known as the Laplace approximation.



B-103

However, it is not infrequent to come across integrals

of the form I that do not satisfy the conditions necessaryn

for the validity of the approximation in (2). Hence

extensions of and modifications to the method of Laplace

must be made in order to obtain the behaviour of these

integrals for large values of n. Here we shall consLder

two such cases. Each of these is illustrated by a specific

example.

The first modification concerns the integral

2

(3) I(n) f xe +( 2x)n dx,f xe 2

where 0(7) is given by

-u 2
(4) e (x) = du.

iT 0

This intcgral occurred in a proLlem in probabilitv tieory.

Note that the function Fi+8 (x) monotonicallv increases

from 0 to 1 as x varies from -- to +-. Hence the greatest

value of this function is not attained at a fi;vte Point

but at infinity, and the conditions for the Laplace approxi-

mation are violated. Nevertheless, we sha'. snow that / (n)

has the behaviour

(5) 1 (n) lo(n+4) /n log _loaq(n+l) + O(1
(n-l) 4 (n+l)Vlog n+!) (nl) iog(n+l)

as n - .

The second modification deals with the incomplete

Beta-type integral
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1 k -i n-k
(6) J(n) = f t n (i-t) n dt,

a
n

where k and a are real-valued functions of n satisfying
n n

k
(7) n = p + 0 ( I

n n

(8) nkla n - aI - 0 as n for each k 1, 2,...,

and 0 < p < a < 1. This integral arises from the study of

probabilities of large deviations. If we put

(9) f (t) = t p (1-t) 1-p

and

k -np-i np-kn n
(10) (t; n) = t n(l-t) n

the integral (6) becomes

1
(11) J (n) = 1 4 (t;n flf(t) ]n dt,

a
n

which is indeed of the form in (1) . Note that the function

p and the lower limit a now depend on n and hence the Laplace

approximation (2) does not apply directly. However, we shall

use a modification of Laplace's method to show that J(n)

has the asvmptotic expansion

cc 2

(12) J(r - ff(a) n Cl, n + 2,n + ... }, as n - ,
n 2

n

where the coelticients c. are bounded functions of n. Asi,n

an application of this result, we show that the tail pro]- -

bility of the sample p-quantile decays exponentially.

I
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